Юрий Почанин - Водородное топливо. Производство, хранение, использование
- Название:Водородное топливо. Производство, хранение, использование
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2022
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Почанин - Водородное топливо. Производство, хранение, использование краткое содержание
Водородное топливо. Производство, хранение, использование - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Чтобы отделить водород от углеродной основы в метане, требуются пар и тепловая энергия при температурах 750–850°С, что и происходит в химических паровых риформерах на каталитических поверхностях. Процесс заключается в нагревании газа в присутствии водяного пара, никелевого катализатора и при давлении 2 МПа (около 19 атмосфер). Результирующая эндотермическая реакциярасщепляет молекулы метана и образует оксид углерода CO и водород H2. Затем газообразный оксид углерода можно пропустить с паром через оксид железаили других оксидов и подвергаются реакция конверсии водяного газадля получения дополнительных количеств H2. Обратной стороной этого процесса является то, что его основными побочными продуктами являются CO, CO2 и другие парниковые газы. При одной тонне произведенного водорода также будет производиться от 9 до 12 тонн CO2, парниковый газ, который может улавливаться.
Конверсия парового природного газа обычно происходит в два этапа. Первый этап осуществляется в трубах, заполненных никелевым катализатором, нанесенным на алюминиевую подложку, рис. 2.3.

Рис.2.3. Схема реактора паровой конверсии природного газа
На этом этапе расщепляется метан и водяной пар на водород и монооксид углерода (синтез-газ):
СН4+ Н2О ↔ СО + 3Н2–206 кДж/моль.
На втором этапе выход водорода увеличивается благодаря дополнительной реакции СО с водой при пониженных температурах в присутствии катализаторов
. «Реакция сдвига» превращает монооксид углерода и воду в диоксид углерода и водород:
СО + Н2О ↔ СО2+ Н2+ 44 кДж/моль.
Эта реакция происходит при температурах 200–250°С. При осуществлении указанных реакций может быть извлечено около 96% водорода, а необходимая теплота процесса получается при сжигании части природного газа. Тепло, необходимое для процесса, подается через стенки труб, нагретых снаружи путем сжигания другой части природного газа.
Очистка продуктового водорода производится в блоке короткоцикловой адсорбции(КЦА).
В парокислородной конверсии вместе с горячим паром в активную зону реактора подаётся кислород. Реакции процесса аналогичные, однако, дополнительно происходит окисление метана кислородом:
CH4+O2 ↔ 2CO+3H2.
Реагирование веществ в парокислородной конверсии метана даёт общий результирующий тепловой эффект, равный нулю. Это делает установку дороже на 5–10 %.
Главное преимущество парокислородной конверсии по сравнению с ПКМ – передача теплоты напрямую, а не через стенку теплообменника. Сравнение характеристик ПКМ и парокислородной конверсии представлено в таблице 2.1.
Таблица 2.1. Сравнение характеристик ПКМ и парокислородной конверсии

В настоящий момент уже разработан высокоэффективный проточный мембранный аппарат для одновременного риформинга метана и окисления СО на никелевых и палладиевых катализаторах. Чистота водорода достигает 99,999 %, тогда как при конверсии природного газа – всего 76,2 %.
Наиболее критическими параметрами в этом способе производства водорода являются выбор оптимальной температуры процесса и выбор материала катализатора, т. е. его состава, а также стабильность работы такого катализатора. Для этих целей используются следующие типы катализаторов.
1.Разложение метана в присутствии массивного металлического катализатора (Fe, Co, Ni) при Т = 650–720°С.
2. Разложение углеводородных газов на поверхности железосодержащего катализатора при Т = 850–900°С под давлением 1–35 атм.
3.Разложение метана или других углеводородов на поверхности брикетированной сажи с никелем или сажи с железом при температурах ниже точки разложения этих соединений.
4.Разложение метана на поверхности катализаторов Ni/Al2O3 или Ni/Mg при Т =500–550°С.
5.Разложение метана на поверхности катализаторов Ni-Cu/Al2O3 или Ni-Cu/Mg при Т = 560–650°С.
Схема процесса конверсии метана следующая, рис.2.4.
.
Рис.2.4. Схема процесса конверсии метана
Процесс конверсии метана состоит из следующих стадий.
1. Природный газ с содержанием CH4–97% поступает в сатуратор (1), где нагревается до 80°C и насыщается водяным паром, затем поступает в теплообменник (2).
2. В теплообменнике (2) газ нагревается до 500°C отходящими конверторными газами, смешивается с кислородом или воздухом и подаётся в конвертор (3).
3. В конверторе (3) сначала идут экзотермические реакции:
CH4+ ½O2 CO + 2H2+ Q
CH4+ 2O2 CO2+ 2H2O + Q
и температура повышается до 1000°C. Затем протекают эндотермические реакции:
CH4+ H2O CO + 3H2 – Q
CH4+ CO2 2CO + 2H2 – Q
Конвертированный газ содержит H2–51–54%, N2(если подавали воздух) – 20%, CO – 20%, CO2–7%, CH4–0,5%.
4. Затем газ увлажняется в увлажнителе (4), охлаждается до 400–500°C в теплообменнике (2) и поступает в конвертор CO (5).
5. В конверторе CO (5) газ проходит ряд тарелок с катализатором, охлаждаясь между ними конденсатом.
6. Далее проходит через теплообменник (6).
7. И в промывной башне (7) очищается от твёрдой части и от CO, CO2, O2 методом последовательной конденсации
В итоге получается либо чистый водород в случае использования для конверсии метана чистого кислорода, либо азото-водородная смесь, если используют в качестве окислителя воздух.
Технология получения водорода обычно включает очистку сырья от серосодержащих соединений, каталитическую конверсию углеводорода (УВ) с водяным паром и 4-хстадийную очистку конвертированного газа от оксидов углерода. Такую схему можно назвать классической, рис.2.5.

Рис.2.5. Блок-схема производства водорода и азотоводородной смеси конверсией легких углеводородов
Конкретным сырьем могут служить любые УВ газы (природные, попутные), нафта и т.п. Для получения 1 т водорода требуется 5–6,6 тыс. м3 природного газа.
Обессеривание сырья – удаление газообразных сернистых соединений, поскольку они являются сильными каталитическими ядами. Это стадия подготовки сырья для производства водорода и АВ смеси.
2.1.1. Пиролиз метана
Пиролиз метана – это умеренно эндотермический процесс разложения природного газа (органического сырья). Пиролиз метана является альтернативным подходом к получению водорода из природного газа без образования CO2 в ходе реакции: CH4→ C↓ + 2H2↑
Читать дальшеИнтервал:
Закладка: