Сборник - Искусственный интеллект – надежды и опасения

Тут можно читать онлайн Сборник - Искусственный интеллект – надежды и опасения - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Сборник - Искусственный интеллект – надежды и опасения краткое содержание

Искусственный интеллект – надежды и опасения - описание и краткое содержание, автор Сборник, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В далеком 1950 году американский математик, отец-основатель кибернетики и теории искусственного интеллекта Норберт Винер опубликовал работу «Человеческое применение человеческих существ» (в русском переводе – «Кибернетика и общество»), в которой выразил свои опасения, связанные с развитием искусственного интеллекта.
Сейчас, в ХХI веке, проблема выглядит еще более злободневной. Наша компьютерная зависимость стала тотальной. Развлечения, покупки, работа, учеба – практически все сосредоточено в гаджетах размером с ладонь. Руководствуясь удобством и – что уж греха таить? – ленью, мы перекладываем на ИИ часть надоевших и скучных функций, а зачастую доверяем ему и принятие решений.
Пока, на волне эйфории от открывшихся перспектив, преимущества искусственного интеллекта кажутся неоспоримыми, но не получится ли так, что милые удобства, которые мы получили сейчас, в период «младенчества» искусственного интеллекта, обернутся крупными неприятностями, когда «младенец» повзрослеет и посмотрит на «родителей» критическим взглядом?
Руководствуясь формулой «кто предупрежден – тот вооружен», Джон Брокман предложил известным ученым, публицистам и философам поразмышлять о перспективах взаимодействия человека и искусственного интеллекта в свете идей, высказанных Винером, а также в свете новых реалий и последних достижений научной мысли.

Искусственный интеллект – надежды и опасения - читать онлайн бесплатно ознакомительный отрывок

Искусственный интеллект – надежды и опасения - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Сборник
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Историки рода Homo Sapiens, скажем Юваль Ной Харари и Стивен Митен [29] Ю. Харари – израильский историк, автор научно-популярного бестселлера «Sapiens: Краткая история человечества» (2011, рус. пер. 2016); С. Митен – английский археолог и популяризатор науки, автор книги «После ледникового периода: общая история человечества» (2003). , в целом согласны с тем, что решающим фактором, который обеспечил нашим предкам глобальное господство на планете около сорока тысяч лет назад, была способность создавать и хранить ментальные репрезентации окружающей среды, обращаться к этим репрезентациям, искажать их посредством актов воображения и, наконец, отвечать на вопросы типа «Что, если?». Примерами могут служить вопросы интервенционные («Что, если я сделаю то-то и то-то?») и ретроспективные, или контрфактивные («Что, если бы я поступил иначе?»). Ни одна обучаемая машина в наши дни не способна давать ответы на такие вопросы. Более того, большинство обучаемых машин не обладают репрезентациями, из которых можно вывести ответы на подобные вопросы.

Отталкиваясь от причинно-следственного мышления, можно сказать, что для нас почти бесполезны любые формы подгонки кривых, модельной слепоты или статистического вывода, сколь бы сложным ни был процесс подгонки. Мы также выявили теоретические рамки для структурирования указанных ограничений по иерархическому признаку.

На первом уровне находится статистическое мышление, которое способно сообщить лишь о том, как наблюдение одного события изменит ваши взгляды на другие события. Например, что симптом может рассказать о болезни?

Далее располагается второй уровень, который опирается на первый, но не наоборот. Здесь помещаются действия. «Что будет, если мы поднимем цены?» «Что, если ты меня рассмешишь?» Этот второй уровень иерархии требует информации о вмешательствах, недоступной на первом уровне. Данную информацию можно закодировать в графическую модель, которая будет уведомлять, какие переменные реагируют на другие.

Третий уровень иерархии является контрфактуальным. Это язык, употребляемый учеными. «Что, если объект будет вдвое тяжелее?» «Что, если я поступлю иначе?» «Это от аспирина у меня перестала болеть голова или все дело в том, что я пошел спать?» Контрфактуальность занимает верхний уровень с той точки зрения, что ее невозможно вывести логически, даже умей мы предсказывать и предугадывать последствия всех своих действий. Тут необходим дополнительный элемент в форме уравнений, чтобы поведать нам, как переменные реагируют на изменения других переменных.

Одним из венчающих труды достижений в исследованиях причинно-следственных связей является алгоритмизация вмешательств и контрфактуальностей, то есть двух верхних уровней нашей иерархии. Иными словами, когда мы закодировали наше научное знание в модели (пусть даже качественной), налицо алгоритмы, позволяющие изучить модель и определить, возможно ли воспринять конкретный запрос, будь то вмешательство или контрфактуальность, на основе имеющихся данных (а если возможно, то как именно). Эта возможность кардинально изменила само занятие наукой, особенно в таких наукоемких дисциплинах, как социология и эпидемиология, где каузальные модели успели стать вторым языком. Указанные дисциплины трактуют описанную лингвистическую трансформацию как каузальную революцию. Цитируя социолога из Гарварда Гэри Кинга: «За последние несколько десятилетий о причинно-следственных связях стало известно намного больше, чем за всю предшествующую историю вопроса».

Размышляя об успехах машинного обучения и пытаясь экстраполировать их на будущее ИИ, я спрашиваю себя: «Известны ли нам базовые ограничения, которые были обнаружены в области причинно-следственных связей? Готовы ли мы преодолеть теоретические препятствия, мешающие нам переходить с одного уровня иерархии на другой?»

Я рассматриваю машинное обучение как инструмент, позволяющий перейти от данных к вероятностям. Но тогда следует сделать два дополнительных шага, чтобы перейти от вероятностей к реальному пониманию, – два больших шага. Один заключается в том, чтобы предсказывать последствия действий, а второй состоит в освоении контрфактуального воображения. Мы не вправе утверждать, что постигли реальность, если не сделаем эти два шага.

В своей блестящей и проницательной работе «Предвидение и понимание» (1961) философ Стивен Тулмин определил противостояние прозрачности и непрозрачности как ключевое условие осознания сути древнего соперничества между греческими и вавилонскими науками. Согласно Тулмину, вавилонские астрономы были мастерами предсказаний по «черному ящику» и сильно превосходили своих греческих соперников по точности и последовательности небесных наблюдений. Тем не менее наука предпочла креативно-умозрительную стратегию греческих астрономов, которая изобиловала метафорическими образами: круглые трубы, полные огня; малые отверстия, сквозь которые сияет небесный огонь (звезды); полусферическая Земля на спине гигантской черепахи… Именно эта безумная стратегия моделирования, а вовсе не вавилонские экстраполяции, побудила Эратосфена (276–194 годы до н. э.) предпринять один из наиболее творческих экспериментов Античности и вычислить окружность Земли. Подобный эксперимент был попросту невозможен среди вавилонских собирателей данных.

Модельная слепота накладывает внутренние ограничения на когнитивные задачи, которые способен выполнять «сильный» ИИ. Мой общий вывод состоит в том, что сопоставимый с человеческим ИИ нельзя создать только на основе машины с модельной слепотой; он требует симбиотического сотрудничества данных и моделей.

Наука о данных является наукой лишь в той мере, в какой она облегчает интерпретацию данных, – перед нами задача двух тел, связь данных и реальности. Данные сами по себе вряд ли окажутся наукой, какими бы «большими» они ни были и насколько бы искусно ими ни манипулировали. Непрозрачные обучаемые системы могут привести нас в Вавилон, но не в Афины.

Глава 3

Цель, заложенная в машину

Стюарт Рассел

профессор компьютерных наук и профессор-стипендиат по машиностроению в Калифорнийском университете (Беркли). Он автор (вместе с Питером Норвигом) книги «Искусственный интеллект: современный подход».

Ученый-компьютерщик Стюарт Рассел, наряду с Илоном Маском, Стивеном Хокингом, Максом Тегмарком и многими другими, настаивает на том, что следует уделять повышенное внимание тем потенциальным опасностям, которые сулит создание интеллекта сверхчеловеческого (или даже человеческого) уровня – так называемого ОИИ, общего искусственного интеллекта, чьи запрограммированные цели вовсе не обязательно будут совпадать с нашими собственными.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сборник читать все книги автора по порядку

Сборник - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Искусственный интеллект – надежды и опасения отзывы


Отзывы читателей о книге Искусственный интеллект – надежды и опасения, автор: Сборник. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x