Гэри Маркус - Искусственный интеллект: перезагрузка. Как создать машинный разум, которому действительно можно доверять
- Название:Искусственный интеллект: перезагрузка. Как создать машинный разум, которому действительно можно доверять
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2021
- Город:Москва
- ISBN:9785206000306
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Гэри Маркус - Искусственный интеллект: перезагрузка. Как создать машинный разум, которому действительно можно доверять краткое содержание
В своей книге известные исследователи в области ИИ объясняют, что нужно сделать, чтобы умные роботы вышли на новый уровень. Как наделить машины здравым смыслом и глубоким умом? Каковы перспективы современной науки в сфере ИИ? Как новое поколение ИИ может сделать нашу жизнь лучше и как снизить риски, связанные с его развитием?
Искусственный интеллект: перезагрузка. Как создать машинный разум, которому действительно можно доверять - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Существует еще один параметр, по которому интеллектуальные игры наподобие го сильно отличаются от реального мира, и это опять имеет отношение к данным. Даже сложные игры (если правила их достаточно строги) могут быть смоделированы практически идеально, поэтому системы искусственного интеллекта, которые в них играют, могут без труда собрать огромные объемы данных, требующихся им для обучения. Так, в случае с го машина может симулировать игру с людьми, просто играя сама против себя; даже если системе потребуются терабайты данных, она сама же их и создаст. Программисты могут таким образом получить абсолютно чистые данные моделирования практически без затрат. Напротив, в реальном мире идеально чистых данных не существует, невозможно их и смоделировать (поскольку правила игры постоянно меняются) и тем более затруднительно собрать многие гигабайты релевантных данных методом проб и ошибок. В действительности на апробацию разных стратегий у нас имеется всего несколько попыток. Мы не в состоянии, например, повторить посещение врача 10 миллионов раз, постепенно корректируя параметры решений перед каждым визитом, чтобы кардинально улучшить наше поведение в плане выбора транспорта. Если программисты хотят обучить робота для помощи пожилым людям (скажем, чтобы он помогал уложить немощных людей в постель), каждый бит данных будет стоить реальных денег и реального человеческого времени; здесь нет возможности собрать все требуемые данные с помощью симуляционных игр. Даже манекены для краш-тестов не могут стать заменой реальным людям. Нужно собирать данные о настоящих пожилых людях с разными особенностями старческих движений, о разных видах кроватей, разных видах пижам, разных типах домов, и здесь нельзя допускать ошибок, ведь уронить человека даже на расстоянии нескольких сантиметров от кровати было бы катастрофой. В данном случае на карту поставлены реальные жизни [6] Определенный прогресс (пока что самый элементарный) в этой области был достигнут с использованием методов узкого искусственного интеллекта. Были разработаны компьютерные системы, которые играют почти на уровне лучших игроков-людей в видеоигры Dota 2 и Starcraft 2, где в любой момент времени участникам показывается только часть игрового мира и, таким образом, перед каждым игроком встает проблема нехватки информации – то, что с легкой руки Клаузевица называют «туманом неизвестности». Однако разработанные системы все равно остаются очень узкоориентированными и неустойчивыми в работе. Например, программа AlphaStar, которая играет в Starcraft 2, обучалась действиям только одной конкретной расы из всего множества персонажей, и почти ничто из этих наработок не является пригодным для игры за любую другую расу. И, разумеется, нет никаких оснований полагать, что методы, используемые в этих программах, пригодны, чтобы делать успешные обобщения в гораздо более сложных ситуациях реальной жизни.
. Как IBM обнаруживала не один, а уже целых два раза (сначала в шахматах, а затем в Jeopardy!), успех в задачах из закрытого мира совершенно не гарантирует успеха в мире открытом.
Третий круг описываемой пропасти – это переоценка надежности . Снова и снова мы видим, что, как только люди с помощью искусственного интеллекта находят решение какой-то проблемы, которое способно функционировать без сбоев некоторое время, они автоматически предполагают, что при доработке (и с несколько большим объемом данных) оно будет надежно работать все время. Но это вовсе не обязательно так.
Берем опять автомобили без водителей. Сравнительно легко создать демоверсию беспилотного автомобиля, который будет правильно двигаться по четко размеченной полосе на спокойной дороге; впрочем, люди умеют это делать уже больше века. Однако куда сложнее заставить эти системы работать в сложных или неожиданных обстоятельствах. Как рассказала нам в письме Мисси Каммингс, директор Лаборатории человека и автономных механизмов (Humans and Autonomy Laboratory) Университета Дьюка (и бывший летчик-истребитель ВМС США), вопрос не в том, сколько миль машина без водителя может проехать, не попав в аварию, а в том, насколько эти автомобили умеют адаптироваться к меняющимся ситуациям. По ее словам, современные полуавтономные транспортные средства «обычно работают только в очень узком диапазоне условий [7] Мисси Каммингс (Missy Cummings), электронное письмо авторам от 22 сентября 2018 года. ГЛАВА 2
, которые ничего не говорят о том, как они могут работать при условиях, отличающихся от идеальных». Выглядеть почти абсолютно надежным на миллионах пробных миль в Фениксе не означает хорошо функционировать во время муссона в Бомбее.
Это принципиальное различие между тем, как автономные транспортные средства ведут себя в идеальных условиях (например, солнечные дни на загородных многополосных дорогах), и тем, что они могли бы сделать в экстремальных условиях, легко может сделаться вопросом успеха и провала целой отрасли. Из-за того что так мало внимания уделяется автономному вождению в экстремальных условиях и что современная методология не развивается в том направлении, чтобы гарантировать корректную работу автопилота в условиях, которые только-только начинают рассматриваться по-настоящему, вполне возможно, скоро выяснится, что миллиарды долларов были потрачены на методы построения беспилотных автомобилей, которые просто не в состоянии обеспечить надежность вождения, сравнимую с человеческой. Возможно, что для достижения того уровня уверенности в технике, который нам необходим, потребуются подходы, кардинально отличные от нынешних.
И автомобили – это лишь один пример из множества аналогичных. В современных исследованиях искусственного интеллекта его надежность была недооценена глобально. Отчасти это случилось потому, что большинство нынешних разработок в этой области связано с проблемами, имеющими высокую устойчивость к ошибкам, например рекомендации по развитию рекламы или продвижению новых товаров. Действительно, если мы порекомендуем вам пять видов продукции, а понравятся вам только три из них, никакого вреда не случится. Но в целом ряде важнейших для будущего сфер применения искусственного интеллекта, включая автомобили без водителя, уход за пожилыми людьми и планирование медицинского обслуживания, решающее значение будет иметь надежность, сопоставимая с человеческой. Никто не купит домашнего робота, который способен благополучно донести до постели вашего престарелого дедушку лишь в четырех случаях из пяти.
Даже в тех задачах, где современный искусственный интеллект должен теоретически предстать в самом лучшем свете, регулярно случаются серьезные сбои, иногда выглядящие очень забавно. Типичный пример: компьютеры в принципе уже неплохо научились распознавать, что находится (или происходит) на том или ином изображении. Иногда эти алгоритмы работают прекрасно, но зачастую выдают совершенно невероятные ошибки. Если вы показываете изображение автоматизированной системе, генерирующей подписи к фотографиям повседневных сцен, вы нередко получаете ответ, удивительно похожий на то, что написал бы и человек; например, для сцены ниже, где группа людей играет во фрисби, широко разрекламированная система генерации субтитров от Google дает совершенно правильное название (рис. 1.1).
Читать дальшеИнтервал:
Закладка: