Мелани Митчелл - Идиот или гений? Как работает и на что способен искусственный интеллект

Тут можно читать онлайн Мелани Митчелл - Идиот или гений? Как работает и на что способен искусственный интеллект - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2022. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Мелани Митчелл - Идиот или гений? Как работает и на что способен искусственный интеллект краткое содержание

Идиот или гений? Как работает и на что способен искусственный интеллект - описание и краткое содержание, автор Мелани Митчелл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
За 65 лет, прошедших после Дартмутского семинара, который положил начало разработке искусственного интеллекта, в этой области совершено множество прорывов, однако до создания машины с «человеческим» интеллектом по-прежнему далеко. Сегодня ИИ распознает изображения и переводит речь, управляет беспилотными автомобилями, обыгрывает человека в шахматы и го, но пока не способен переносить навыки на новые задачи, может перепутать соль с дорожной разметкой, а автобус – со страусом. Мелани Митчелл, одна из ведущих ученых-информатиков, знакомит читателя с историей развития ИИ и принципами его работы, рассказывает о главных проблемах его применения и перспективах создания ИИ «человеческого уровня».
В формате PDF A4 сохранён издательский дизайн.

Идиот или гений? Как работает и на что способен искусственный интеллект - читать онлайн бесплатно ознакомительный отрывок

Идиот или гений? Как работает и на что способен искусственный интеллект - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Мелани Митчелл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 1 A нейрон в мозге В простой перцептон Иными словами перцептрон это - фото 2

Рис. 1. A: нейрон в мозге; В: простой перцептон

Иными словами, перцептрон – это простая программа, которая принимает решение “да или нет” (1 или 0) в зависимости от того, достигает ли сумма взвешенных входных сигналов порогового значения. Вероятно, вы тоже время от времени принимаете такие решения в жизни. Например, вы узнаете мнение нескольких друзей о конкретном фильме, но вкусам одних друзей доверяете больше, чем вкусам других. Если сумма “дружеских восторгов” – при большем весе мнений тех друзей, которым вы доверяете больше, – достаточно высока (то есть превышает некоторый неосознанный порог), вы решаете посмотреть фильм. Именно так перцептрон выбирал бы фильмы к просмотру, если бы у него были друзья.

Вдохновленный сетями нейронов в мозге, Розенблатт предположил, что сети перцептронов могут выполнять визуальные задачи, например справляться с распознаванием объектов и лиц. Чтобы понять, как это может работать, давайте изучим, как с помощью перцептрона решить конкретную визуальную задачу: распознать рукописные цифры вроде тех, что показаны на рис. 2.

Давайте сделаем перцептрон детектором восьмерок – в таком случае он будет выдавать единицу, если входным сигналом служит изображение цифры 8, и ноль, если на входном изображении будет любая другая цифра. Чтобы создать такой детектор, нам нужно (1) понять, как превратить изображение в набор численных входных сигналов, и (2) определить численные значения весов и порог перцептрона для формирования верного выходного сигнала (1 для восьмерок и 0 для других цифр). Я рассмотрю эту задачу более подробно, поскольку многие из этих принципов понадобятся нам при обсуждении нейронных сетей и их применения в компьютерном зрении.

Рис 2 Примеры рукописных цифр Входные сигналы нашего перцептрона На рис 3A - фото 3

Рис. 2. Примеры рукописных цифр

Входные сигналы нашего перцептрона

На рис. 3A показана увеличенная рукописная восьмерка. Каждый квадрат координатной сетки – это пиксель с численным значением “насыщенности”: насыщенность белых квадратов равняется 0, насыщенность черных – 1, а насыщенность серых имеет промежуточное значение. Допустим, все изображения, которые мы даем перцептрону, подогнаны к единому размеру – 18 × 18 пикселей. На рис. 3B показан перцептрон для распознавания восьмерок. У этого перцептрона 324 (то есть 18 × 18) входных сигнала, каждый из которых соответствует одному пикселю из сетки 18 ×18. При получении изображения, подобного показанному на рисунке 3A, каждый входной сигнал настраивается на насыщенность соответствующего пикселя. Каждому входному сигналу также присваивается свой вес (на рисунке не показан).

Рис 3 Иллюстрация перцептрона который распознает рукописные восьмерки - фото 4

Рис. 3. Иллюстрация перцептрона, который распознает рукописные восьмерки. Каждый пиксель на изображении 18 × 18 пикселей соответствует одному входному сигналу перцептрона, что дает 324 (= 18 × 18) входных сигнала.

Как узнать веса и порог перцептрона

В отличие от символической системы Универсального решателя задач, которую я описала ранее, перцептрон не имеет очевидных правил для выполнения задачи, а все его “знания” закодированы в числах, определяющих веса входных сигналов и пороговое значение. В ряде статей Розенблатт показал, что при корректных весах и пороговом значении такой перцептрон, как на рисунке 3B, вполне неплохо справляется с такими задачами на восприятие, как распознавание простых рукописных цифр. Но как именно определить корректные веса и пороговое значение для конкретной задачи? И снова Розенблатт предложил ответ, навеянный работой мозга: перцептрон должен сам узнавать эти значения. Но каким образом? Вторя популярным в то время теориям бихевиоральной психологии, Розенблатт считал, что перцептроны должны обучаться, накапливая условный рефлекс . Отчасти вдохновленный работой бихевиориста Б. Ф. Скиннера, который обучал крыс и голубей выполнять задачи с помощью положительного и отрицательного подкрепления, Розенблатт полагал, что перцептрон следует обучать на примерах: его нужно вознаграждать, когда он выдает верный результат, и наказывать, когда он ошибается. Теперь такая форма обучения в ИИ называется обучением с учителем. В ходе обучения система получает пример и генерирует выходной сигнал, а затем получает “сигнал от учителя”, который показывает, насколько выходной сигнал системы отличается от верного. Затем система использует этот сигнал, чтобы скорректировать веса и пороговое значение.

Концепция обучения с учителем – ключевой элемент современного ИИ, поэтому ее стоит разобрать подробнее. Как правило, обучение с учителем требует большого набора положительных (скажем, коллекции восьмерок, написанных разными людьми) и отрицательных (скажем, коллекции других рукописных цифр, среди которых нет восьмерок) примеров. Каждый пример размечается человеком, который присваивает ему определенную категорию (метку) – здесь это “восьмерка” и “не восьмерка”. Метка применяется в качестве контрольного сигнала. Некоторые положительные и отрицательные примеры используются для тренировки системы и формируют тренировочное множество . Оставшиеся примеры – тестовое множество – используются для оценки работы системы после обучения, чтобы понять, насколько хорошо она научилась правильно отвечать на запросы в целом, а не только на обучающие примеры.

Вероятно, самым важным в информатике стоит признать понятие “алгоритм”. Оно обозначает “рецепт” со списком шагов, которые компьютер может предпринять для решения конкретной задачи. Главным вкладом Фрэнка Розенблатта в ИИ стало создание особого алгоритма, названного алгоритмом обучения перцептрона. С помощью этого алгоритма перцептрон можно научить на примерах определять веса и пороговое значение для получения верных ответов. Вот как он работает: сначала весам и порогу присваиваются случайные значения в диапазоне от –1 до 1. В нашем примере первому входному сигналу может быть присвоен вес 0,2, второму – вес –0,6 и так далее. Пороговым значением может стать 0,7. С генерацией начальных значений без труда справится компьютерная программа, называемая генератором случайных чисел.

Теперь мы можем приступать к процессу обучения. Перцептрон получает первый обучающий пример, не видя метку с верной категорией. Перцептрон умножает каждый входной сигнал на его вес, суммирует результаты, сравнивает сумму с пороговым значением и выдает либо 1, либо 0. Здесь выходной сигнал 1 означает, что перцептрон распознал восьмерку, а выходной сигнал 0 – что он распознал “не восьмерку”. Далее в процессе обучения выходной сигнал перцептрона сравнивается с верным ответом, который дает присвоенная человеком метка (“восьмерка” или “не восьмерка”). Если перцептрон прав, веса и пороговое значение не меняются. Если же перцептрон ошибся, веса и пороговое значение слегка корректируются так, чтобы сумма входных сигналов в этом тренировочном примере оказалась ближе к нужной для верного ответа. Более того, степень изменения каждого веса зависит от соответствующего значения входного сигнала, то есть вина за ошибку в основном возлагается на входные сигналы, которые сильнее других повлияли на результат. Например, в восьмерке на рис. 3A главным образом на результат повлияли бы более насыщенные (здесь – черные) пиксели, в то время как пиксели с нулевой насыщенностью (здесь – белые) не оказали бы на него никакого влияния. (Для любопытных читателей я описала некоторые математические подробности в примечании [30] Математически алгоритм обучения перцептрона описывается следующим образом. Для каждого веса w j : w j ← w j + η ( t – y ) x j , где t – верный выходной сигнал (1 или 0) для заданного входного сигнала, y – фактический выходной сигнал перцептрона, x j – входной сигнал, связанный с весом w j , а η – скорость обучения , задаваемая программистом. Стрелка обозначает обновление. Порог учитывается путем создания дополнительного “входного сигнала” x 0 с постоянным значением 1, которому присваивается вес w 0 = – порог . При наличии этого дополнительного входного сигнала и веса (называемого смещением) перцептрон дает сигнал на выходе, только если сумма входных сигналов, помноженных на веса (то есть скалярное произведение входного вектора и вектора веса) больше или равняется 0. Часто входные значения масштабируются и подвергаются другим преобразованиям, чтобы веса не становились слишком велики. .)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Мелани Митчелл читать все книги автора по порядку

Мелани Митчелл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Идиот или гений? Как работает и на что способен искусственный интеллект отзывы


Отзывы читателей о книге Идиот или гений? Как работает и на что способен искусственный интеллект, автор: Мелани Митчелл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x