Вадим Шмаль - Применения элементов искусственного интеллекта на транспорте и в логистике

Тут можно читать онлайн Вадим Шмаль - Применения элементов искусственного интеллекта на транспорте и в логистике - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Применения элементов искусственного интеллекта на транспорте и в логистике
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785005567079
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Вадим Шмаль - Применения элементов искусственного интеллекта на транспорте и в логистике краткое содержание

Применения элементов искусственного интеллекта на транспорте и в логистике - описание и краткое содержание, автор Вадим Шмаль, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Абрамов Д. В., Федеральное государственное автономное образовательное учреждение высшего образования «Московский политехнический университет»Корпуков А. В., Федеральное государственное автономное образовательное учреждение высшего образования «Российский национальный исследовательский медицинский университет имени Н. И. Пирогова»Шмаль В. Н., Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта»

Применения элементов искусственного интеллекта на транспорте и в логистике - читать онлайн бесплатно ознакомительный отрывок

Применения элементов искусственного интеллекта на транспорте и в логистике - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Вадим Шмаль
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 2014 году Хинтон и Томас Клювер описывают нейронные сети и используют их для построения системы, способной транскрибировать речь человека с заячьей губой. Система транскрибирования показала значительное улучшение точности распознавания речи.

В 2015 году Нил Якобштейн и Арун Росс описывают фреймворк TensorFlow, который сейчас является одним из самых популярных фреймворков машинного обучения, ориентированного на данные.

В 2017 году Фей-Фей Ли подчеркивает важность глубокого обучения в науках о данных и описывает некоторые исследования, которые были выполнены в этой области.

Искусственные нейронные сети и генетические алгоритмы

Искусственные нейронные сети (ИНС), обычно называемые просто алгоритмами глубокого обучения, представляют собой смену парадигмы в искусственном интеллекте. У них есть возможность изучать концепции и отношения без каких-либо заранее определенных параметров. ИНС также способны изучать неструктурированную информацию, выходящую за рамки требований установленных правил. Первоначальные модели ИНС были построены в 1960-х годах, но в последнее десятилетие их исследования активизировались.

Рост вычислительной мощности открыл новый мир вычислений благодаря разработке сверточных нейронных сетей (CNN) в начале 1970-х годов. В начале 1980-х Станислав Улам разработал функцию символического расстояния, которая стала основой для будущих алгоритмов сетевого обучения.

К концу 1970-х годов в ImageNet развернуто несколько CNN. В начале 2000-х годов графические процессоры, основанные на обработке данных с плавающей запятой, обеспечивали экспоненциальную производительность и низкое энергопотребление для обработки данных. Появление алгоритмов глубокого обучения является следствием применения более общих вычислительных архитектур и новых методов обучения нейронных сетей.

Благодаря последним достижениям в области многоядерных процессоров и графических процессоров обучение нейронных сетей с несколькими графическими процессорами (ГП) возможно за небольшую часть стоимости обычного обучения. Один из самых популярных примеров – глубокое обучение на графических процессорах. Обучение глубоких нейронных сетей на графических процессорах происходит быстро, масштабируемо, а также требует возможностей низкоуровневого программирования для реализации современных архитектур глубокого обучения.

Оптимизация генетических алгоритмов может быть эффективным методом поиска перспективных решений проблем информатики.

Методы генетического алгоритма обычно реализуются в среде моделирования, и многие общие проблемы оптимизации могут быть решены с помощью стандартного программного обеспечения библиотеки, такого как PowerMorph или Q-Learning.

Традиционные программные приложения на основе генетических алгоритмов требуют наличия обученного эксперта для программирования и настройки своего агента. Для обеспечения возможности автоматического создания сценариев программное обеспечение с генетическим алгоритмом может распространяться в виде исполняемого исходного кода, который затем может компилироваться обычными пользователями.

Генетические алгоритмы оптимизированы для известных решений, которые могут быть любого типа (например, целочисленный поиск, матричная факторизация, разбиение и т. д.). Напротив, оптимизация Монте-Карло требует, чтобы оптимальное решение могло быть сгенерировано неизвестным методом. Преимущество генетических алгоритмов перед другими методами оптимизации заключается в их автоматическом контроле над количеством необходимых поколений, начальными параметрами, функцией оценки и вознаграждением за точные прогнозы.

Важным свойством генетического алгоритма является его способность создавать надежную, «дикую» конфигурацию параметров (например, чередование горячих и холодных конечных точек), что соответствует заданной скорости обучения (скорость обучения, умноженная на количество поколений). Это свойство позволяет пользователю анализировать и решать, является ли конфигурация равновесия нестабильной.

Обратной стороной генетических алгоритмов является их зависимость от распределенного управления памятью. Хотя обширные методы оптимизации могут использоваться для обработки больших наборов входных данных и работы с несколькими конфигурациями процессоров / ядер, сложность этой операции может сделать решения на основе генетических алгоритмов уязвимыми для ограничений ресурсов, которые препятствуют прогрессу. Даже при наличии кода генетического алгоритма теоретически программы на основе генетических алгоритмов могут находить решения проблем только при запуске на соответствующей компьютерной архитектуре. Примеры проблем, связанных с генетическим алгоритмом, работающим на более ограниченной архитектуре, включают ограничения размера памяти для хранения представлений генетического алгоритма, ограничения памяти, налагаемые базовой операционной системой или набором инструкций, и ограничения памяти, налагаемые программистом, такие как ограничения на объем вычислительной мощности, выделяемой для генетического алгоритма и / или требований к памяти.

Было разработано множество алгоритмов оптимизации, которые позволяют генетическим алгоритмам эффективно работать на ограниченном оборудовании или на обычном компьютере, но реализации генетических алгоритмов на основе этих алгоритмов были ограничены из-за их высоких требований к специализированному оборудованию.

Гетерогенное оборудование способно предоставлять генетические алгоритмы со скоростью и гибкостью обычного компьютера, используя при этом меньше энергии и компьютерного времени. Большинство реализаций генетических алгоритмов основаны на подходе генетической архитектуры.

Генетические алгоритмы можно рассматривать как пример дискретной оптимизации и теории вычислительной сложности. Они дают краткое объяснение эволюционных алгоритмов. В отличие от алгоритмов поиска, генетические алгоритмы позволяют контролировать изменение параметров, влияющих на производительность решения. Для этого генетический алгоритм может изучить набор алгоритмов поиска оптимального решения. Когда алгоритм сходится к оптимальному решению, он может выбрать алгоритм, который работает быстрее или точнее.

На математическом языке программного анализа генетический алгоритм – это функция, которая отображает состояния в переходы к следующим состояниям. Состояние может быть отдельным местом в общем пространстве или набором состояний. «Генерация» – это количество состояний и переходов между ними, которые необходимо выполнить для достижения целевого состояния. Генетический алгоритм использует вероятность перехода, чтобы найти оптимальное решение, и использует небольшое количество новых мутаций каждый раз, когда поколение завершается. Таким образом, большинство мутаций являются случайными (или квазислучайными) и поэтому могут игнорироваться генетическим алгоритмом для проверки поведения или принятия решений. Однако, если алгоритм может быть использован для решения задачи оптимизации, то можно использовать этот факт для реализации шага мутации.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Вадим Шмаль читать все книги автора по порядку

Вадим Шмаль - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Применения элементов искусственного интеллекта на транспорте и в логистике отзывы


Отзывы читателей о книге Применения элементов искусственного интеллекта на транспорте и в логистике, автор: Вадим Шмаль. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x