Шон Кэрролл - Квантовые миры и возникновение пространства-времени

Тут можно читать онлайн Шон Кэрролл - Квантовые миры и возникновение пространства-времени - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Шон Кэрролл - Квантовые миры и возникновение пространства-времени краткое содержание

Квантовые миры и возникновение пространства-времени - описание и краткое содержание, автор Шон Кэрролл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.
Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.
Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.
Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.
В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.
В формате PDF A4 сохранён издательский дизайн.

Квантовые миры и возникновение пространства-времени - читать онлайн бесплатно ознакомительный отрывок

Квантовые миры и возникновение пространства-времени - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Шон Кэрролл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Такое облако часто называют волновой функцией , поскольку оно может колебаться подобно волне, по мере того как со временем изменяется наиболее вероятный результат измерения. Волновая функция обычно обозначается греческой буквой «пси» (Ψ). Для каждого возможного результата измерения, например координаты частицы, волновая функция позволяет присвоить конкретное число, называемое амплитудой , связанной с данным результатом. Так, амплитуда, с которой частица может оказаться в конкретной точке x 0, будет записываться как Ψ( x 0).

Вероятность получить такой результат при измерениях равна квадрату амплитуды - фото 3

Вероятность получить такой результат при измерениях равна квадрату амплитуды.

Вероятность конкретного результата = |Амплитуда данного результата| 2

Это простое отношение называется правилом Борна в честь физика Макса Борна [2] Есть одна небольшая техническая деталь, которую хотелось бы здесь упомянуть; затем смело забудем о ней. Амплитуда любого конкретного результата фактически является комплексным, а не вещественным числом. Вещественные числа входят в ряд всех чисел, расположенных между минус бесконечностью и бесконечностью. Возводя в квадрат вещественное число, мы всякий раз получаем другое вещественное число, которое больше или равно нулю. Поэтому если говорить строго о вещественных числах, то квадратного корня из отрицательного числа просто не существует. Математики давным-давно осознали, что квадратные корни из отрицательных чисел были бы очень удобны, поэтому и ввели такое понятие, как мнимая единица – комплексное число, являющееся квадратным корнем из –1. Мнимое число – это просто вещественное число, называемое мнимой частью, умноженное на i . В таком случае комплексное число состоит из двух частей: вещественной и мнимой. Вертикальные черточки у члена |Амплитуда| 2 в формуле правила Борна означают, что мы фактически складываем квадраты вещественной и мнимой частей. Все это я написал только для самых въедливых читателей: далее я буду говорить просто «вероятность – это амплитуда в квадрате» и этим удовлетворюсь. . Часть стоящей перед нами задачи – разобраться, откуда в мире взялось такое правило.

Совершенно определенно следующее: мы не утверждаем, что есть электрон, обладающий некоторой координатой и скоростью; мы попросту не знаем этих значений, и эта наша неосведомленность как раз заключена в волновой функции. В этой главе мы ничего не говорим о том, что «есть», а отмечаем лишь то, что мы наблюдаем. В следующих главах я вообще стану упирать на то, что волновая функция – это и есть истинная сумма свойств реальности, а такие идеи, как скорость и координата электрона, – всего лишь характеристики, которые мы в силах измерить. Но не все разделяют эту точку зрения, поэтому пока постараемся сохранять беспристрастность.

⚪ ⚪ ⚪

Давайте сопоставим правила классической и квантовой механики и сравним их. Состояние классической системы описывается координатами и скоростью всех движущихся в ней элементов. Чтобы проследить ее эволюцию, представим себе примерно следующую процедуру:

Правила классической механики

1. Подготавливаем систему, фиксируя конкретные координаты и скорость для каждой из ее частей.

2. Следим за эволюцией системы в соответствии с ньютоновскими законами движения.

Вот и все. Дьявол, естественно, в деталях. В некоторых классических системах движущихся элементов очень много.

В свою очередь, в типичном учебнике по квантовой механике описание правил дается в двух частях. В первой части имеем структуру, строго эквивалентную той, что представлена в классическом случае. Квантовые системы описываются волновыми функциями, а не координатами и скоростями. Точно как в классической механике ньютоновские законы движения управляют эволюцией состояния системы, в квантовой системе есть уравнение, описывающее, как эволюционирует волновая функция. Оно называется уравнением Шрёдингера. Уравнение Шрёдингера можно сформулировать так: «Скорость изменения волновой функции пропорциональна энергии квантовой системы». Чуть более строгая формулировка такова: волновая функция может описывать состояния с различными энергиями, и, согласно уравнению Шрёдингера, высокоэнергетические части волновой функции эволюционируют стремительно, а низкоэнергетические – очень медленно. Что, если подумать, вполне логично.

Для наших целей важно лишь то, что существует уравнение, позволяющее спрогнозировать, как волновые функции гладко [3] Здесь и далее в книге под гладкостью эволюции волновой функции подразумевается ее непрерывное и плавное изменение с течением времени, без скачков или коллапса. – Примеч. науч. ред. эволюционируют с течением времени. Эта эволюция столь же неизбежна и предсказуема, как и движение тел в соответствии с законами Ньютона в классической механике. Пока – ничего экстраординарного.

Правила квантовой механики (часть первая)

1. Подготавливаем систему, фиксируя конкретную волновую функцию Ψ.

2. Далее система эволюционирует согласно уравнению Шрёдингера.

Пока все нормально – эти элементы квантовой механики строго соотносятся с их классическими предшественниками. Вот только правила классической механики на этом заканчиваются, а в игру вступают дополнительные правила квантовой.

Все эти дополнительные правила связаны с измерением. Измеряя, например, спин или координату частицы, мы, согласно квантовой механике, в любом случае получим лишь определенные, возможные в данном случае результаты. Конкретный результат спрогнозировать не выйдет, но можно рассчитать вероятность получения каждого из возможных результатов. После того как измерение будет выполнено, волновая функция коллапсирует , превращаясь в совершенно новую функцию, в которой все вероятности сконцентрированы вокруг именно того результата, который вы только что получили. Таким образом, измеряя квантовую систему, максимум, на что вы можете рассчитывать – это возможность спрогнозировать вероятность различных ее результатов. Но если вы сразу повторите измерение той же самой величины, то раз за разом будете получать один и тот же результат – волновая функция сколлапсировала в него.

И вот самый сок нашего разбора.

Правила квантовой механики (часть вторая)

3. Существуют определенные наблюдаемые величины, которые по желанию можно измерить, – например координата частицы. По итогам измерения ее координаты мы получим вполне определенный результат.

4. Вероятность получения любого конкретного результата вычисляется исходя из волновой функции. Волновая функция связывает амплитуду с каждым из возможных результатов измерения; вероятность любого результата есть квадрат амплитуды волновой функции.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Шон Кэрролл читать все книги автора по порядку

Шон Кэрролл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовые миры и возникновение пространства-времени отзывы


Отзывы читателей о книге Квантовые миры и возникновение пространства-времени, автор: Шон Кэрролл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x