Smart Reading - Ключевые идеи книги: Deep-медицина. Как искусственный интеллект может вернуть здравоохранению человечность. Эрик Тополь
- Название:Ключевые идеи книги: Deep-медицина. Как искусственный интеллект может вернуть здравоохранению человечность. Эрик Тополь
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Smart Reading - Ключевые идеи книги: Deep-медицина. Как искусственный интеллект может вернуть здравоохранению человечность. Эрик Тополь краткое содержание
Ключевые идеи книги: Deep-медицина. Как искусственный интеллект может вернуть здравоохранению человечность. Эрик Тополь - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
• нейросети невольно отражают человеческие заблуждения вроде расизма и сексизма: так, Google убрала из лексикона Google Photos слово «горилла», поскольку механизм распознавания изображений отмечал фото афроамериканцев с очень темным цветом кожи. Что же говорить об объективности медицинских исследований, которые нередко сосредоточены на показателях белой части населения?
Множество статей об успехах искусственного интеллекта в медицинской сфере не только не подтверждены реальными клиническими условиями (они проводились in silico [2] In silico – то есть путем компьютерного моделирования. Фраза создана по аналогии с in vivo (испытания на живом организме) и in vitro (испытания в пробирке).
), но и публикуются в малоизвестных источниках и не проходят процедуру рецензирования.
Помимо методологических трудностей существуют этические и социальные проблемы. На создание новых алгоритмов могут влиять не только медики, но и представители страховых компаний, а у них свои, циничные интересы. И как быть с тем, что ИИ угрожает сокращением 40 % рабочих мест в сфере здравоохранения? Плохая новость для США, где в этой сфере занята 1/6 часть населения.
Искусственный интеллект на службе у медицины
Как ИИ умеет работать с паттернами
Поскольку ИИ умеет очень быстро делать выводы на основе огромного количества данных, особенно хорошо структурированных, первыми на хорошие новости могут надеяться травматологи, радиологи, патологоанатомы, то есть врачи, которые работают с паттернами – моделями с повторяющимися закономерностями вроде рентгенограмм и прочих медицинских снимков. Тут у ИИ несколько явных преимуществ перед докторами.
• ИИ точнее.Если предоставить машине 50 тысяч рентгеновских снимков грудной клетки, она сможет распознавать на них патологию с точностью в 95 %, не заменяя рентгенолога, но существенно облегчая ему работу по сортировке снимков. Оценивая рентгенограммы переломов тазобедренного сустава, ИИ столь точен, что заменяет более дорогие методы сканирования типа МРТ; нейронная сеть, обученная более чем на 1000 пациентов, показала 99 % точность, сопоставимую с опытом рентгенологов. Компания Zebra Medical Vision протестировала нейронную сеть, которая обнаруживает компрессионные переломы позвонков с 93 % точностью, тогда как рентгенологи пропускают такие переломы более чем в 10 % случаев. Разница в 3 % не так уж велика, но она имеет значение, когда речь идет о людях.
В совместном исследовании компаний Moorfields и DeepMind, включающем более 14 тысяч снимков, автоматизированный анализ десятков глазных патологий не уступал в точности анализу экспертов. При этом ИИ куда чаще, чем врачи, давал показания для более детального обследования у узкого специалиста: вероятность ложной тревоги составила лишь около 1 %, и не было случая, когда ИИ рекомендовал бы пациенту с тяжелым заболеванием простое наблюдение у окулиста, тогда как врачи согласились лишь с 65 % решений о перенаправлении пациентов к узким специалистам.
• ИИ в разы чувствительнее к текстуре и цветопередаче снимка, и это принципиально важно, если речь идет о некоторых геномных аномалиях, связанных с раком мозга. Кроме того, алгоритмы умеют улучшать качество изображения, что позволяет сократить радиационные дозы КТ-сканирования, меньше вредя пациентам и снижая стоимость сканеров;
• ИИ помогает сократить риски: машинная обработка маммографических изображений более чем 1000 пациенток в сочетании с результатами биопсии показала, что более 30 % операций на груди можно было избежать. Алгоритмы Google обнаруживали метастазы с точностью более 92 % по сравнению с 73 % для патологоанатомов при одновременном снижении ложноотрицательного показателя на 25 %. Правда, Google грешил ложноположительными результатами.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Примечания
1
Читайте саммари книги Даниэля Канемана «Думай медленно… Решай быстро».
2
In silico – то есть путем компьютерного моделирования. Фраза создана по аналогии с in vivo (испытания на живом организме) и in vitro (испытания в пробирке).
Интервал:
Закладка: