Анатолий Молчанов - Гиперболический рост населения Земли и эволюция человека
- Название:Гиперболический рост населения Земли и эволюция человека
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2021
- ISBN:978-5-532-96440-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Анатолий Молчанов - Гиперболический рост населения Земли и эволюция человека краткое содержание
Гиперболический рост населения Земли и эволюция человека - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Если Поршнев интересуется моментом начала истории, то Дьяконов задается вопросом о ее конце, который, по его выражению, «совпадает с переходом экспоненциального развития к вертикальной линии». В этом и состоит его главная заслуга и причина, по которой историческая сингулярность как точка, к которой сжимаются циклы мирового исторического развития может быть названа «сингулярностью Дьяконова».
(О гиперболе Фёрстера И.М. Дьяконов либо не знает, либо считает, что ее можно называть «экспонентой». Но у экспоненты нет сингулярности, а у гиперболы – есть. Эта точка сингулярности кривой гиперболического роста и может быть названа «исторической сингулярностью». Но заслуга в этом уже С.П. Капицы.)
Термин «сингулярность Дьяконова» впервые появляется в работах А.Д. Панова. В аннотации и предисловии к книге Панова «Универсальная эволюция и проблема поиска внеземного разума (SETI)», читаем:
«Вводятся представления о масштабно-инвариантном аттракторе планетарной эволюции и его завершении в режиме с обострением «сингулярностью Дьяконова» в первой половине XXI века». <���…>
«Удивительной находкой оказалось то, что подход И.М. Дьяконова, который в основу анализа положил последовательность фазовых переходов социальной системы, естественным образом обобщается на всю эволюцию – и биосферы, и цивилизации, начиная с появления жизни на Земле. Эволюция цивилизации в определенном смысле оказывается гладким автомодельным продолжением эволюции биосферы, а точка сингулярности получает статус некоторого переломного или завершающего момента всей четырехмиллиардолетней истории развития жизни на Земле» [9].
Приведенные выдержки воспринимаются с трудом, но даже если не вникать в смысл этой физикалистской абракадабры можно все-таки понять, что Панов определяет сингулярность Дьяконова как предельную точку последовательности дат своих планетарных революций. Такая инициатива представляется выражением самонадеянности, некомпетентности и бестактности ее автора. Здесь важно не только то, что, совмещая биосферную и историческую сингулярность, Панов приходит к абсурдным, апокалиптическим результатам.
Даже и сам термин «сингулярность» Панов понимает неправильно. Действительно, для того, чтобы можно было говорить о сингулярной точке истории, эволюции необходимо, чтобы существовал количественный показатель исторического или эволюционного развития, который бы неограниченно возрастал за конечный промежуток времени. Поскольку подобный показатель в построениях Панова отсутствует, то ни о какой вертикали Снукса – Панова, ни о каком режиме с обострением в первой четверти XXI века – говорить не приходится.
Так, например, если считать, что ускорение исторического процесса было не гиперболическим, а экспоненциальным, то «переход к вертикали» занимал бы бесконечно долгое время. И речь в таком случае шла бы не о точке сингулярности, а о некотором конечном (в идеальном случае бесконечном) интервале времени – эпохе перемен.
Говорить об исторической сингулярности или сингулярности Дьяконова стало возможным лишь после работ С.П. Капицы, который первым обоснованно связывает эволюцию человека и историю человечества с растущей численностью населения Земли. Согласно принципу демографического императива Капицы именно численность населения Земли в эпоху гиперболического роста и есть та переменная, которая может служить естественной мерой эволюции и развития человечества как системы.
Поскольку в формуле Фёрстера в двадцатых годах XXI столетия ее значение устремляется к бесконечности, понятие «сингулярность Дьяконова» обретает смысл. В таком случае историческая сингулярность или сингулярность Дьяконова может быть также названа «сингулярностью Дьяконова – Капицы».
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Интервал:
Закладка: