Джим Холт - Идеи с границы познания. Эйнштейн, Гёдель и философия науки
- Название:Идеи с границы познания. Эйнштейн, Гёдель и философия науки
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2020
- Город:Москва
- ISBN:978-5-17-115193-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джим Холт - Идеи с границы познания. Эйнштейн, Гёдель и философия науки краткое содержание
Идеи с границы познания. Эйнштейн, Гёдель и философия науки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Казалось бы, такое отношение рисует Деана как самого настоящего сторонника «реформаторов математики» среди педагогов и самого настоящего врага родителей, которые хотят, чтобы учителя математики их детей «вернулись к основам». Но когда я спросил Деана, как он относится к реформе математики, он не проявил особой симпатии к этому направлению. «Мысль, что все дети разные и что каждый должен открывать все по-своему – нет, я с этим не согласен, – сказал он. – Я уверен, что организация мозга у всех одинаковая. Мы видим это у младенцев, видим и у взрослых. В целом все мы идем по одной дороге с небольшими отклонениями». Деан искренне восхищается математическими программами азиатских стран, в том числе китайской и японской, которые обеспечивают детям досконально структурированный опыт, предвосхищают диапазон их реакции на каждом этапе и обеспечивают задачами, составленными так, чтобы минимизировать количество ошибок. «К этому мы пытаемся вернуться и во Франции», – сказал он. Совместно с коллегой Анной Уилсон Деан разработал компьютерную игру The Number Race , чтобы помочь детям при дискалькулии. Программа эта самообучающаяся, она выявляет задачи, где ребенок чувствует себя неуверенно, и подстраивает уровень сложности, чтобы доля верных решений оставалась на уровне 75 % – это не дает ребенку опустить руки.
Организация мозга у нас и в самом деле общая, однако сохраняются и культурные различия, диктующие нам, как обращаться с числами, и они не ограничиваются стенами класса. Эволюция снабдила нас приблизительной числовой осью, но чтобы числа обрели точность, кристаллизовались, по выражению Деана, нужна система символов. В языке амазонского племени мундуруку, которое изучали в последнее время Деан и его коллеги, особенно лингвист Пьер Пика, числительные есть только для чисел от одного до пяти (причем слово, которым мундуруку обозначают «пять», буквально значит «одна ладонь»). И даже эти слова для них, судя по всему, лишь примерные указания: если показать индейцу мундуруку три предмета, он может сказать, что их три, а может – что четыре. Тем не менее у мундуруку неплохая численная интуиция. «Например, они понимают, что пятьдесят плюс тридцать – это больше шестидесяти, – говорит Деан. – Естественно, они не знают этого на вербальном уровне и не располагают языковыми средствами, чтобы об этом поговорить. Но когда мы показываем им соответствующие множества и преобразования, они сразу понимают, о чем речь».
Судя по всему, у мундуруку мало культурных инструментов, дополняющих врожденное числовое чувство. Интересно, что следы таких же стадий несут в себе символы, которыми мы записываем числа. Первые три римские цифры – I, II и III – образованы повторением одного и того же символа нужное количество раз. Символ четырех – IV – уже не такой прозрачный. По тому же принципу строятся китайские цифры: первые три состоят из одной, двух и трех горизонтальных черточек, а четвертая имеет уже другую форму. Этой логике следуют даже арабские цифры: 1 – просто вертикальная палочка, 2 и 3 изначально были двумя и тремя горизонтальными черточками, соединенными для простоты письма («Прелестный маленький фактик, но едва ли он до сих пор закодирован у нас в мозге», – заметил Деан).
Сегодня арабскими цифрами пользуются практически во всем мире, а слова, которыми мы обозначаем числа, естественно, в разных языках разные. И эти различия далеко не тривиальны, как отмечали и Деан, и другие исследователи. Английский – очень громоздкий язык. В нем есть особые слова для чисел с 11 до 19 и для десятков с 20 до 90. Поэтому считать для англоговорящих детей – трудная задача, и они склонны к ошибкам вроде «двадцать восемь, двадцать девять, двадцать десять, двадцать одиннадцать». Французский ничем не лучше – в нем сохранились рудиментарные двадцатеричные чудовища вроде quatre-vingt-dix-neuf – «четыре-двадцать-десять-девять» (99). А китайский, напротив, сама простота, синтаксис его числительных точно совпадает с десятеричной записью арабскими числами с минимумом терминов. Вот почему средний китайский четырехлетка считает до сорока, а американские дети того же возраста едва добираются до пятнадцати. Преимущества распространяются и на взрослых. Поскольку китайские числительные очень короткие – в среднем на их произнесение уходит меньше четверти секунды, а на английские – треть секунды, – говорящий по-китайски в среднем может удержать в памяти девять знаков, а англоговорящий – только семь (те, кто говорит на восхитительно экономичном кантонском диалекте, распространенном в Гонконге, способны жонглировать в активной памяти десятью знаками).
В 2005 году Деан был избран профессором экспериментальной когнитивной психологии в Колледж де Франс – очень престижном институте, который основал в 1530 году Франциск I. В его штате всего 52 ученых, и Деан – самый молодой. В инаугурационной лекции Деан говорил об удивительном свойстве математики – она одновременно и продукт человеческого разума, и мощный инструмент, позволяющий открывать законы, по которым действует человеческий разум. Он говорил о противоречиях между данными новых методов исследования, в том числе сканирования мозга, и древними философскими представлениями о числе, пространстве и времени. И сказал, что считает, что ему повезло, что он живет в эру, когда достижения психологии и сканирования мозга совокупно «сделали видимым» невидимое доселе царство мысли.
По мнению Деана, числовое мышление – лишь начало пути к решению задачи. В последнее время он размышляет о том, как подойти методами эмпирической науки к философской проблеме сознания. Эксперименты с подсознательной «числовой настройкой» показывают, что основная часть операций, которые наша психика проделывает с числами, происходит бессознательно – и это открытие заставило Деана задаться вопросом, почему одни виды ментальной деятельности переходят порог осознанности, а другие нет. В сотрудничестве с двумя коллегами Деан исследовал нейронные основы так называемого «глобального рабочего пространства» – теории сознания, которая вызвала большой интерес в философских кругах. Согласно его версии этой теории, информация становится осознанной, когда определенные нейроны «рабочего пространства» передают ее на много участков мозга сразу и тем самым делают доступной одновременно, скажем, и для языка, и для памяти, и для перцепционной категоризации, и для планирования действий, и т. д., и т. п. Иначе говоря, сознание – «мозговая знаменитость», как говорил философ Дэниел Деннетт, или «слава мозга».
В своем кабинете в NeuroSpin Деан объяснил, как некоторые особенно длинные нейроны рабочего пространства соединяют далекие зоны человеческого мозга в единую пульсирующую сеть сознания. Чтобы показать мне, где находятся эти зоны, он достал из шкафа голубой гипсовый слепок неправильной формы, размером примерно с грейпфрут. «Это мой мозг!» – с явным удовольствием объявил Деан. И рассказал, что эту модель изготовила машина для быстрого создания опытных образцов, разновидность трехмерного принтера, на основании компьютерных данных одной из множества МРТ, которые он проходил. Слегка нахмурясь, Деан показал мне, где, по мнению ученых, помещается числовое чутье, и отметил, что у него этот участок имеет несколько необычную форму. Любопытно, что компьютерная программа сочла мозг Деана «исключением» – настолько его паттерны активности отличаются от нормы для человека. Деан ненадолго замолк, покачивая в ладонях нежно-голубой ком – модель собственного сознания, созданную на основе его же размышлений, – а потом с улыбкой заметил: «Знаете, мне нравится мой мозг».
Читать дальшеИнтервал:
Закладка: