Чад Орцель - Завтрак с Эйнштейном. Экзотическая физика повседневных предметов

Тут можно читать онлайн Чад Орцель - Завтрак с Эйнштейном. Экзотическая физика повседневных предметов - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Завтрак с Эйнштейном. Экзотическая физика повседневных предметов
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2020
  • Город:
    Москва
  • ISBN:
    978-5-480-00402-1
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Чад Орцель - Завтрак с Эйнштейном. Экзотическая физика повседневных предметов краткое содержание

Завтрак с Эйнштейном. Экзотическая физика повседневных предметов - описание и краткое содержание, автор Чад Орцель, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Великолепная книга, погружающая нас в невероятный мир квантовой физики. Автор показывает, что «физика – везде, в каждой вещи, и никто не может объяснить физику лучше, чем Чад Орцель». Обыкновенный мир вокруг нас полон странных и загадочных явлений, и это объясняет физика. Орцель искусно выявляет и делает понятным самые сложные ее законы.
Эта книга обязательна для чтения каждому, кто хочет объяснить себе принципы работы окружающего нас мира.

Завтрак с Эйнштейном. Экзотическая физика повседневных предметов - читать онлайн бесплатно ознакомительный отрывок

Завтрак с Эйнштейном. Экзотическая физика повседневных предметов - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Чад Орцель
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

При всем при этом, однако, очень трудно указать точно, что же делает слабое взаимодействие. Что делает слабое взаимодействие особенно трудным для объяснения неспециалистам в физике по сравнению с другими силами, так это то, что она не выступает в виде силы, которую можно ощутить в обычном смысле. Тяга гравитации является центральным элементом нашего повседневного опыта, и электромагнитные силы между зарядами и магнитами тоже являются чем-то, что можно почувствовать. И хотя сильное взаимодействие проявляет себя на очень удаленной шкале, все же довольно легко понять силу, удерживающую ядро против электромагнитного отталкивания.

А вот слабое взаимодействие не используется, чтобы что-то удерживать вместе или отталкивать друг от друга. Вот почему большинство физиков отбросили приятный и неточный термин «фундаментальные силы» в пользу «фундаментальных взаимодействий». Вместо того чтобы тянуть или толкать частицы, слабое ядерное взаимодействие выполняет важную функцию по обеспечению превращений частиц: если быть более точным, она превращает частицы из семейства кварков в частицы из семейства лептонов. Это позволяет нижнему кварку (отрицательно заряжен) превращаться в верхний кварк (имеет положительный заряд), излучив электрон и третью частицу, известную как нейтрино. Или верхний кварк может превратиться в нижний, поглотив электрон и испустив антинейтрино. Эти превращения позволяют нейтронам превращаться в протоны, и наоборот.

Процесс, имеющий место в Солнце, включает в себя как раз последний вариант и становится обратной стороной явления, более известного как «бета-распад», когда нейтрон в ядре атома испускает электрон и превращается в протон. Бета-распад был известен с самого начала исследований радиоактивности, но его объяснение было раздражающим вызовом на заре квантовой теории, приводя к ярким анекдотам физики XX века.

Проблема с бета-распадом заключается в том, что электроны, испускаемые распадающимся ядром, возникают с широким спектром энергий (до крайне высоких значений). Такое не должно было быть возможным для реакции, включавшей лишь две частицы – законы сохранения энергии и сохранения импульса указывают, что возможно лишь одно значение энергии для отделяющегося электрона (как в случае с процессом «альфа-распада», где тяжелое ядро распадается, испуская ядро гелия: два протона и два нейтрона, скрепленных вместе). Объяснение широкого спектра значений энергии, получаемых при бета-распаде, долгое время загоняло в угол физиков и довело некоторых до предложения радикальных мер – отказа от идеи сохранения энергии как фундаментального физического принципа.

Решение было найдено молодым австрийским физиком Вольфгангом Паули. В 1930 году он предположил (в письме, посланном на конференцию, которую он пропустил из-за бала в Цюрихе), что в бета-распаде участвуют не две, а три частицы, – нейтрон, превращающийся в протон, электрон и третья, неуловимая частица с очень малой массой. Новой частице быстренько подобрали название – «нейтрино» (похоже на «маленькая и нейтральная» по-итальянски). Она уносит часть энергии, точное количество которой зависит от точного импульса электрона и нейтрино, когда они покидают ядро.

Введение нейтрино сначала показалось не менее отчаянным шагом, чем отказ от закона сохранения энергии. Паули сам писал другу: «Я сделал нечто ужасное. Я ввел частицу, которую невозможно поймать. Это нечто такое, что теоретик никогда не должен делать». В течение нескольких лет великий итальянский физик Энрико Ферми развил общее предположение Паули в полную и исключительно успешную математическую теорию бета-распада, после чего эта идея была быстро принята. Нейтрино Паули оказалось одним из трех (изначально было предложено нейтрино, мюон и тау-нейтрино), и, несмотря на все начальные сложности, в итоге оказалось возможным его обнаружить, что и было подтверждено Клайдом Коуэном [23] К оу э н, Клайд Лоррейн (1919–1974) – американский физик-теоретик, со-первооткрыватель нейтрино вместе с Фредериком Райнесом. – Прим. ред. и Фредериком Райнесом [24] Р а й н е с, Фредерик (1918–1998) – американский физик, профессор. Лауреат Нобелевской премии (1995). – Прим. ред в 1956 году [25] Райнес разделил Нобелевскую премию по физике с Коуэном, который умер в 1974 г., а эта премия не присуждается посмертно. Две других Нобелевских премии были даны за работы с детекторами нейтрино Реймонду Дейвису-младшему и Масатоси Косибе в 2002 г., а также Такааки Кадзите и Артуру Б. Макдональду в 2015-м. – Прим. ред. .

Какое все это имеет отношение к Солнцу? Ответ достаточно деликатен, но мы уже намекали на это несколько раз по ходу обсуждения раньше. Солнце подпитывается энергией от слияния ядер водорода, которые представляют единичные протоны, в ядра гелия, состоящие из двух протонов и двух нейтронов. Где-то в ходе этого процесса два протона должны обратиться в нейтроны, что делается возможным благодаря слабому ядерному взаимодействию и процессу «обратного бета-распада», упомянутого ранее: протон превращается в нейтрон, испуская при этом нейтрино [26] В ходе этого процесса протон также должен либо испустить позитрон (эквивалент электрона в области антиматерии), либо поглотить один из огромного количества электронов, оставшихся от изначального газа, присутствующего в Солнце. Любой из излученных позитронов будет быстро аннигилировать с одним из упомянутых электронов, так что конечный результат для внешнего наблюдателя будет следующим: один протон и один электрон исчезли, оставив один нейтрон и одно нейтрино вместо себя. – Прим. авт. . В результате Солнце производит невероятное количество нейтрино, которые были обнаружены на Земле, и их измерения дают информацию как о ядерных реакциях в ядре Солнца, так и о свойствах самих нейтрино.

Превращение протонов в нейтроны внутри звезд является существенно важным для существования огромного количества элементов, с которыми мы имеем дело в повседневной жизни – кислород в воздухе, которым мы дышим, и вода, которую мы пьем, углерод в пище, которую мы едим, кремний в земле под нами. Когда очень тяжелая звезда выжигает большую часть водорода в своем ядре, она начинает реакцию слияния гелия в еще более тяжелые элементы. Когда гелия остается мало, очень тяжелые звезды начинают выжигать углерод и так далее по всей Периодической таблице элементов. На каждой стадии этого процесса энергия сильного взаимодействия, высвобождающаяся за счет слияния, уменьшается [27] То, что энергии при ядерном слиянии становится все меньше при переходе к более тяжелым элементам, может быть понято в терминах энергии сильного взаимодействия, выступающей в форме массы: энергия требуется для того, чтобы держать двенадцать кварков вместе в ядре гелия, оно существенно меньше чем та, что нужна для четырех отдельных, не связанных между собой протонов. Но по мере увеличения количества частиц прирост энергии уменьшается. Это немного похоже на организационную эффективность группы людей: два человека, которые совместно пользуются помещением, платят за него дешевле, чем один, но добавление соседей по комнате экономит деньги лишь до определенного момента. Расходы на обустройство шестого соседа по комнате могут превысить экономию на квартплате. Таким же образом, энергия, полученная за счет добавления новых частиц к большому ядру, недостаточно велика. – Прим. авт. , пока кремний не будет превращаться в железо. Ядерная реакция слияния кремния в железо уже не дает никакой энергии, производство тепла, поддерживающего ядро звезды, останавливается. В этой точке процесса внешние слои звезды обрушиваются внутрь, чтобы произвести взрыв суперновой звезды, высвобождая так много энергии, что взрывающаяся звезда зачастую на некоторое время становится самой яркой в своей галактике.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Чад Орцель читать все книги автора по порядку

Чад Орцель - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Завтрак с Эйнштейном. Экзотическая физика повседневных предметов отзывы


Отзывы читателей о книге Завтрак с Эйнштейном. Экзотическая физика повседневных предметов, автор: Чад Орцель. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x