Варвара Дьяконова - Пострефлекторная нейробиология поведения
- Название:Пострефлекторная нейробиология поведения
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:978-5-907117-52-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Варвара Дьяконова - Пострефлекторная нейробиология поведения краткое содержание
В формате a4.pdf сохранен издательский макет.
Пострефлекторная нейробиология поведения - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Предложенная модель сильно отличается как от искусcтвенных нейронных сетей, состоящих из формальных нейронов Маккаллока – Питтса [12], так и от моделей взаимодействия биологических нейронов, строящихся в виде систем дифференциальных уравнений [8, 15]. Наша модель для описания ритмической активности ансамбля является дискретной – это делает ее гораздо более интерпретируемой, чем непрерывные модели, и гораздо менее вычислительно сложной, а значит, легко масштабируемой. С другой стороны, нейроны в модели намного сложнее, а их взаимодействия разнообразнее, чем в стандартных искусственных нейронных сетях. Они имеют два важных отличия: (i) трансмиттер-специфичность и (ii) наличие того или иного типа эндогенной активности. На каждом такте дискретного времени нейроны взаимодействуют, выбрасывая трансмиттеры в общее внеклеточное пространство (ВКП) и затем принимая их из ВКП. Каждый нейрон имеет полный доступ к ВКП и реагирует на все трансмиттеры, рецепторы к которым у него есть. Суммарное воздействие, пришедшее на рецепторы, наряду с эндогенной составляющей, определяет активность нейрона на данном такте. Добавляя в состав ВКП те или иные трансмиттеры и изменяя их пропорции, можно моделировать механизмы адаптивности эндогенных актов на обоих описанных выше уровнях – грубом и тонком (создание новых ритмов и изменение параметров существующих), а также механизмы обучения (сборка новых устойчивых ансамблей).
Мы предполагаем, что результаты, полученные на относительно простых мультитрансмиттерных генераторах моторного поведения, можно будет экстраполировать на механизмы выбора в более сложных системах – таких, как сети из ансамблей нейронов, в которых общий сетевой выход будет зависеть от выборов отдельных ансамблей.
Литература
[1] Базенков Н. И., Воронцов Д.Д., Дьяконова В. Е., Жилякова Л. Ю., Захаров И. С., Кузнецов О. П., Куливец С. Г., Сахаров Д. А . Дискретное моделирование межнейронных взаимодействий в мультитрансмиттерных сетях // Искусственный интеллект и принятие решений. 2017. Т. 2. С. 55–73.
[2] Балабан П. М., Воронцов Д.Д., Дьяконова В. Е., Дьяконова Т. Л., Захаров И. С., Коршунова Т. А., Орлов O. Ю., Павлова Г. А., Панчин Ю. В., Сахаров Д. А., Фаликман М. В. Центральные генераторы паттерна (CPGs) // Журн. высш. нерв. деят. 2013. Т. 63. С. 520– 541.
[3] Дьяконова В. Е. Нейротрансмиттерные механизмы контекст-зависимого поведения // Журн. высш. нерв. деят. 2012. Т. 62. C. 1–17.
[4] Жилякова Л. Ю., Кузнецов О. П. Принципы дискретного моделирования гетерохимических механизмов в нервных системах // XVIII Международная научно-техническая конференция «Нейроинформатика-2016»: Сборник научных трудов. НИЯУ МИФИ. М., 2016. Ч. 3. С. 82–90.
[5] Сахаров Д. А . Биологический субстрат генерации поведенческих актов // Журн. общ. биол. 2012. Т. 73. С. 334–348.
[6] Сахаров Д. А., Каботянский Е. А . Интеграция поведения крылоногого моллюска дофамином и серотонином // Журн. общ. биол. 1986. Т. 47. С. 234–244.
[7] Graybiel A. M. The basal ganglia and cognitive pattern generators // Schizophr. Bull. 1997. Vol. 23. P. 459–469.
[8] Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its applications to conduction and excitation in nerve // J. Physiol. (Lond.). 1952. Vol. 116. P. 500–544.
[9] Korshunova N. A., Zakharov I. S. Swimming in the pteropod mollusc is determined by the dopamine-serotonin balance // XI East European Conference of the International Society for Invertebrate Neurobiology «Simpler Nervous Systems». Zvenigorod, 2016. Abstracts. P. 48.
[10] Lawal R. A., Calvi L. M. The niche as a target for hematopoietic manipulation and regeneration // Tissue Engineering. Part B, Reviews. 2011. Vol. 17. P. 415–422.
[11] Li Linheng; Xie Ting. Stem cell niche: structure and function // Annual Review of Cell and Developmental Biology. 2005. Vol. 21. P. 605–631.
[12] McCulloch W. S., Pitts W. A logical calculus of the ideas immanent in nervous activity // The Bulletin of Mathematical Biophysics. 1943. Vol. 5. P. 115–133. (Русский перевод: Мак-Каллок У. С., Питтс В. Логическое исчисление идей, относящихся к нервной активности // Автоматы: СПб. – М., 1956. С. 363–384.)
[13] Palmer C. R., Kristan W. B. Contextual modulation of behavioral choice // Current Opinion in Neurobiology. 2011. Vol. 21. P. 520–526.
[14] Scadden D. T. The stem-cell niche as an entity of action // Nature. 2006. Vol. 441. No. 7097. P. 1075–1079.
[15] Vavoulis D., Straub V., Kemenes I., Kemenes G., Feng J., Benjamin P. Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network // European Journal of Neuroscience. 2007. Vol. 25. P. 2805–2818.
2018
Нейрон прогнозирует будущее
Известно, что прошлый опыт, особенно необычный или стрессирующий, запоминается организмом и влияет на прогнозирование будущих событий. Память о таком опыте может сохраняться в течение длительного времени и проявляться в измененном внутреннем состоянии и поведенческом выборе. Этот хорошо известный психологам и физиологам человека факт получает подтверждение в исследованиях на животных. Недавно было показано, что даже сравнительно простой беспозвоночный организм, такой как моллюск, опирается на «воспоминания о прошлом опыте» при принятии решений [1, 2]. Так, улитки, которые испытали длительный период лишения пищи, в течение многих дней после прекращения голода демонстрировали аппетит на сахарозу, за которую их наказывали электрическим ударом, и этим существенно отличались от контрольных животных. Напрашивалось предположение, что длительное отсутствие еды организм улитки запомнил, «скорректировал модель внешней среды» и адаптировал под нее свое поведение. Далеко не всегда учет прошлых событий приводит к правильному прогнозу (как и в описанной выше экспериментальной модели). Понять, в какой момент можно считать, что «прошлое не вернется», и исключить его из возможных сценариев развития событий – непростая и одновременно очень важная задача для организмов самого разного уровня организации.
Удивительно мало известно о том, как прошлый опыт и текущая ситуация взаимодействуют на клеточном уровне. В настоящее время господствует представление о ключевой роли «синаптических весов» и переконфигурации нейронных сетей в механизмах разного рода памяти. Однако в последние годы появились работы, оспаривающие это представление экспериментально [3, 4, 5, 6] и теоретически [7, 8, 9]. Аргументируется существование механизмов памяти на уровне отдельного нейрона. В сложной системе нейронов млекопитающих довольно трудно показать памятный след в пределах одной клетки и определить его зависимость от влияния ансамбля. Возможное участие всех видов несинаптических событий, в том числе экстрасинаптического нейромодулирующего воздействия, в механизмах хранения и модификации памяти не было выяснено в сложных системах.
Нервная система моллюсков дает уникальную возможность исследовать взаимодействия между одной клеткой и ансамблем нейронов. Идентифицированные нейроны можно изолировать из системы при непрекращающейся регистрации их активности [10, 11]. Кроме того, их можно использовать в качестве подвижных биосенсоров для мониторинга экстрасинаптического высвобождениия нейромодуляторов из определенных частей нервной системы [12]. Ранее мы показали, что вынужденная мышечная локомоция в низкой воде приводит к долгосрочным изменениям поведения и активности клеток у прудовика [13]. Эту простую модель памяти предыдущего опыта мы использовали для выяснения возможных механизмов хранения и стирания опыта на клеточном уровне. Полученные результаты показывают, что в исследуемой модели прошлый опыт может храниться в измененных свойствах электровозбудимой мембраны нейрона, в то время как текущая ситуация (контекст) контролирует проявление индивидуальной памяти нейрона посредством изменений в его нейрохимическом микроокружении.
Читать дальшеИнтервал:
Закладка: