Варвара Дьяконова - Пострефлекторная нейробиология поведения
- Название:Пострефлекторная нейробиология поведения
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:978-5-907117-52-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Варвара Дьяконова - Пострефлекторная нейробиология поведения краткое содержание
В формате a4.pdf сохранен издательский макет.
Пострефлекторная нейробиология поведения - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Можно ожидать, что конкретным механизмом этих регуляций является нейросекреция в сетчатке. Нейросекреция, обусловленная действием света, действительно недавно открыта в сетчатке млекопитающих [18, 19]. Возможно, здесь она играет иную роль, чем в эмбриональной сетчатке амфибий, но сам факт существования нейрокринных ретинальных элементов гипоталамического типа повышает вероятность высказанных выше предположений. <���…>
Обсуждения и выводы.<���…> Факты, свидетельствующие о сильных количественных сдвигах в величинах плавательных бросков у личинок, лишенных слуховых пузырьков, представляют, на наш взгляд, определенный интерес. Можно с достаточной уверенностью полагать, что регистрируемые при применявшейся методике сдвиги активности определяются не качественной (сигнальной), а количественной, неспецифической характеристикой вестибулярного афферентного притока. Анализ экспериментальных данных, по-видимому, нужно связать с развитыми в течение последних лет представлениями о функциях сетевидного образования ствола головного мозга. В настоящее время выяснено, что эта область центральной нервной системы обладает ранее не предполагавшимся богатством связей с чувствительным и эффекторными системами организма. Импульсы из разнообразных чувствительных зон, приходящие в сетевидное образование по коллатералям афферентных волокон, преобразуются здесь в регуляторные влияния, посредством которых ретикулярная система активирует или тормозит рабочие нервные центры в соответствии с потребностями организма [44; 32, гл. III]. Регуляции такого рода, сейчас интенсивно исследуемые, помогают понять как потребность нервной системы в определенном количестве афферентных импульсов, так и относительную независимость отдельных моторных зон от сегментарной афферентации. Действительно, какую-то важную функцию, отличную от адаптивного приспособления моторики к афферентным сигналам, может выполнять тотальный афферентный приток, перераспределяемый, по-видимому, при помощи сетевидного образования.
Сопоставляя эти представления с нашими данными, мы получаем возможность понимать сдвиг активности в оперированной группе животных как последствие общего афферентного дефицита, который не имеет непосредственного отношения к сигнально-координирующей функции лабиринтных импульсов. Общее сокращение чувствительного притока снижает уровень функциональной активации мотонейронов и таким путем влияет на двигательную активность.
Как же организуется у амфибий влияние афферентных импульсов из VIII ганглия на моторные клетки спинного мозга? Литературные данные показывают, что в этом случае важнейшую роль играет пара гигантских нейронов, тела которых симметрично лежат в продолговатом мозге на уровне VIII корешка и гигантские аксоны которых после перекреста идут в спинном мозге до его каудальных сегментов. Эти так называемые маутнеровские нейроны на своих дендритах, теле и аксоне имеют нервные окончания от самых разнообразных чувствительных зон; и больше всего – от VIII пары нервов; с другой стороны, их аксоны образуют коллатеральные связи со всеми моторными сегментами спинного мозга [16, 20, 34, 45, 48, 49].
Интереснейшим обстоятельством является то, что задолго до недавних исследований сетевидного образования мозга млекопитающих Детвилер [28] указал на выполнение сходных функций у амблистомы маутнеровскими нейронами. В опытах с удалением одного или обоих нейронов Маутнера Детвилер обнаружил, что как в том, так и в другом случае наступают расстройства моторной системы, выражающиеся в быстром истощении плавательных реакций при частых повторных тактильных раздражениях. Сходный результат дали опыты Оппенгеймер [46] на рыбах. Позже, использовав свой количественный метод, Детвилер [30] выявил прогрессирующий характер этого расстройства и отсутствие компенсации после односторонней операции. Сопоставляя этот факт с опытами, в которых односторонне удалялся слуховой пузырек, Детвилер обратил внимание на существенную разницу в моторных расстройствах, поскольку удаление одного слухового пузырька лишь относительно слабо и с последующей компенсацией затрагивает количественную характеристику плавательных реакций. На основании своих опытов Детвилер заключил, что, очевидно, функция нейрона Маутнера – «быть общим коллектором и распределителем импульсов» [28: 424].
Таким образом, еще до открытия функций сетевидного образования у высших позвоночных аналогичная функция была, на основании прямых опытов, приписана маутнеровским нейронам амблистомы. Стефанелли [48] указывает на то, что эти нейроны имеются только у амфибий и рыб, совершающих плавательную локомоцию посредством ундуллярных движений туловища и хвоста. В иных случаях (например, после метаморфоза бесхвостых амфибий) эти гигантские клетки отсутствуют. Отсюда Стефанелли, вслед за другими авторами [8, 17, 35, 51], делает вывод о том, что функция нейронов Маутнера и их отростков – в координации такой формы локомоций, точнее, в координации цефалокаудальной прогрессии сократительных волн. Эта интерпретация, однако, совершенно не согласуется с несомненным фактом наличия нормально координированной цефалокаудальной прогрессии при плавании спинальных рыб и амфибий (напр., [53] ), хотя в этих условиях тело нейрона Маутнера отсечено от спинного мозга. Предположение Детвилера о функции нейронов Маутнера кажется гораздо более обоснованным. Аргументация Стефанелли, на наш взгляд, только подтверждает правильность этого предположения: на самом деле, выделение из ретикулярной системы пары гигантских клеток у некоторых низших позвоночных, обладающих характерной формой локомоции (рыбы, хвостатые амфибии, личинки бесхвостых амфибий), обусловлено, по-видимому, наличием мощного, нерасчлененного локомоторного аппарата, выполняющего свою функцию как единое целое и, следовательно, нуждающегося в едином и нерасчлененном источнике регуляторных влияний. При переходе к более дробным и разнообразным формам локомоции увеличивается количество «адресатов», нуждающихся в активации или торможении, и соответственно расчленяется аппарат снабжения. Интересно, что в этом случае на месте гигантского нейрона обнаруживаются множественные ретикулярные клеточные элементы [48].
Все изложенные здесь соображения заставляют вернуться к вопросу о том, что афферентная импульсация не только координирует, но и активирует (трофически) деятельность моторных отделов мозга. В свое время эта идея была сильно скомпрометирована различными опытами, демонстрировавшими относительно нормальные проявления моторных реакций в деафферентированных сегментах спинного мозга (напр., [9] ). В свете новых данных эти опыты нуждаются в пересмотре. Так, становится объяснимым следующий старый факт: успешно и координированно функционирующая деафферентированная конечность лягушки немедленно парализуется после высокой перерезки спинного мозга, хотя остальные конечности моторных свойств при этом не теряют. Не говорит ли это о том, что необходимая для моторной деятельности афферентная неспецифическая активация мотонейронов сохраняется после сегментарной деафферентации благодаря компенсаторной деятельности ретикулярной системы продолговатого мозга? Интересно, что Чепелюгина [15] показала дифференцированное выпадение отдельных моторных актов при перерезках на разном уровне продолговатого мозга; это согласуется с фактом замены при метаморфозе бесхвостых амфибий гигантского нейрона Маутнера совокупностью мелких ретикулярных клеток, обеспечивающих, по-видимому, регуляцию различных систем. Именно над VIII парой нервов, как показала Чепелюгина, возможна самая низкая поперечная перерезка мозга, не вызывающая еще паралича деафферентированной конечности.
Читать дальшеИнтервал:
Закладка: