Роман Душкин - Искусственный интеллект

Тут можно читать онлайн Роман Душкин - Искусственный интеллект - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Роман Душкин - Искусственный интеллект краткое содержание

Искусственный интеллект - описание и краткое содержание, автор Роман Душкин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Перед вами книга по искусственному интеллекту от известного технологического евангелиста Романа Душкина, директора по науке и технологиям Агентства Искусственного Интеллекта*. В этой книге вы найдёте исчерпывающее описание современного состояния технологий искусственного интеллекта и сфер жизни, где их можно применять. Более того, автор сделал упор на гуманитарной составляющей исследований в области искусственного интеллекта, что выгодно отличает эту книгу от множества других изданий по теме. Также здесь развенчиваются многочисленные мифы об искусственном интеллекте и описывается авторское видение будущего.
Издание будет интересно всем, кто хочет быстро погрузиться в горячую тему искусственного интеллекта, получить базовую терминологию и освоить основные методы.

Искусственный интеллект - читать онлайн бесплатно ознакомительный отрывок

Искусственный интеллект - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Роман Душкин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Обобщение достижений А. Чёрча и А. Тьюринга привело к формулированию тезиса Чёрча-Тьюринга, который, являясь эвристическим утверждением, гласит, что для любой алгоритмически вычислимой функции существует вычисляющая её значения машина Тьюринга. Этот тезис постулирует эквивалентность между интуитивным понятием алгоритмической вычислимости и строго формализованными понятиями частично рекурсивной функции (по Чёрчу), или функции, вычислимой на машине Тьюринга (по Тьюрингу). Тезис невозможно строго доказать или опровергнуть ввиду того, что интуитивное понятие алгоритмической вычислимости строго не определено. Однако этот тезис в совокупности с теорией вычислений сегодня лежит в основе алгоритмического решения задач и, как следствие, имеет непосредственное применение в рамках искусственного интеллекта.

Вместе с тем в 1948 году американский математик Клод Шеннон публикует статью «Математическая теория связи», которая сегодня считается вехой в рождении теории информации. Несмотря на то что до К. Шеннона в области проблем передачи информации работали такие пионеры, как Гарри Найквист и Ральф Хартли, именно Клоду Шеннону удалось математически точно сформулировать основные положения новой науки, определить её базис и доказать основную теорему, позже названную его именем. Эта теорема определяет предел максимального сжатия данных и числовое значение информационной энтропии. В связи с дальнейшим развитием сетей передачи данных теория информации и все её приложения стали развиваться семимильными шагами, что привело к появлению многочисленных способов помехоустойчивого кодирования информации для каналов с шумом. Всё это имеет самое непосредственное значение для развития интеллектуальных систем, поскольку вопросы передачи информации в них стоят на одном из первых мест.

Конечно, одной из центральных наук, стоящих в основе разработки технологий искусственного интеллекта, является кибернетика как базовая методология исследования сложных систем, взаимодействующих друг с другом и со средой. Кибернетика сама по себе является междисциплинарной областью исследования, базирующейся на многих отраслях науки, в том числе и уже перечисленных здесь ранее. Однако именно разработанный в её рамках научный аппарат в полной мере позволяет целенаправленно заниматься поиском и проектированием сложных адаптивных и самообучающихся систем, к которым, вне всяких сомнений, относятся системы искусственного интеллекта. Кибернетику как науку разрабатывали такие знаменитые учёные, как Уильям Росс Эшби, Карл Людвиг фон Берталанфи, Джон фон Нейман, Стаффорд Бир, а также многочисленная когорта русских учёных, среди которых обязательно надо упомянуть Ивана Алексеевича Вышеградского (основоположника теории автоматического регулирования), Алексея Андреевича Ляпунова, Виктора Михайловича Глушкова и популяризатора науки об искусственном интеллекте Льва Тимофеевича Кузина.

Все теоретические изыскания в области теории вычислений, теории информации, кибернетики и других наук в конечном итоге приводят к развитию вычислительной техники как прикладной дисциплины, рассматривающей вопросы создания и программирования универсальных вычислительных машин. Попытки создать механическую машину для вычислений предпринимались со времён, наверное, Блёза Паскаля, и первым в этом преуспел наш соотечественник Семён Николаевич Корсаков, который в 1830-х годах создавал первые «интеллектуальные машины» на перфокартах. Хотя в те же самые годы английский математик Чарльз Бэббидж разрабатывал проект универсальной цифровой вычислительной машины, до реализации дело у него не дошло. Несмотря на всё это, основы современной вычислительной техники были заложены Джоном фон Нейманом, который разработал принципы построения архитектуры универсальных вычислительных машин. Впрочем, первый компьютер в современном понимании сделал немецкий инженер Конрад Цузе, он же разработал и первый язык программирования высокого уровня, однако из-за военно-политических особенностей мира в те времена работы Цузе оставались малоизвестными. После Второй мировой войны работы над созданием универсальных компьютеров велись во всё ускоряющемся ритме, который выдерживается до сих пор (так называемый «закон Мура»).

Однако по мере продвижения в деле создания всё более мощных вычислительных систем становилось ясно, что разработать интеллект in silico так просто не получится, и исследователей в этом отношении ждало такое же разочарование, как создателей различных механических кукол (автоматонов), которым казалось, что ещё чуть-чуть – и их куклы обретут разум. Как не получилось с механикой, так же не получилось и с электроникой. Это способствовало вовлечению в исследования нейрофизиологов и других специалистов в части анатомии, физиологии и других аспектов функционирования нервной системы и других регуляторных систем организмов человека и животных.

И вот в 1943 г. американские нейрофизиолог Уоррен Мак-Каллок и математик Уолтер Питтс публикуют статью, которая открыла миру новую вычислительную модель, основанную на понятии искусственного нейрона. Да, эта модель была довольно упрощённой и не принимала во внимание большое количество свойств органических нейронов, однако она позволяла производить вычисления. Эта статья фактически открыла широчайшее направление исследований, которое сегодня превалирует в области искусственного интеллекта – искусственные нейронные сети. Вслед за У. МакКалоком и У. Питтсом следует отметить таких учёных, как канадский физиолог Дональд Хебб, который описал принципы обучения искусственного нейрона (он предложил первый работающий алгоритм обучения искусственных нейронных сетей), а также американский нейрофизиолог Фрэнк Розенблатт, который разработал на искусственных нейронах устройство, моделирующее процесс восприятия, – перцептрон.

Но всё, как обычно, оказалось не таким простым, как казалось. Несмотря на то что исследователям удалось смоделировать один нейрон и составить из таких моделей нейронную сеть, сознания в ней так и не зародилось. С одной стороны, это было связано с тем, что на тех вычислительных мощностях, которые были доступны учёным в середине XX века, можно было смоделировать нейронную сеть, состоящую из пары сотен нейронов и нескольких слоёв. Такой объём совсем не соответствует десяткам миллиардов нейронов в головном мозге человека с сотнями тысяч связей для каждого нейрона. С другой стороны, становилось понятно, что «карта не является местностью», так что ждать самозарождения сознания в нейронной сети, даже если она будет очень сложной, слишком странно. Поэтому исследователи обратились к такой науке, как психология.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роман Душкин читать все книги автора по порядку

Роман Душкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Искусственный интеллект отзывы


Отзывы читателей о книге Искусственный интеллект, автор: Роман Душкин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x