Геннадий Вильдяйкин - Исследование и оценка параметров сигналов в распределенных информационных системах. Для студентов технических специальностей

Тут можно читать онлайн Геннадий Вильдяйкин - Исследование и оценка параметров сигналов в распределенных информационных системах. Для студентов технических специальностей - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Исследование и оценка параметров сигналов в распределенных информационных системах. Для студентов технических специальностей
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785449397409
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Геннадий Вильдяйкин - Исследование и оценка параметров сигналов в распределенных информационных системах. Для студентов технических специальностей краткое содержание

Исследование и оценка параметров сигналов в распределенных информационных системах. Для студентов технических специальностей - описание и краткое содержание, автор Геннадий Вильдяйкин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В данной книге основное внимание уделено физическим основам распространения и порождения сигналов, рассмотрены вопросы излучений и наводок на цепи электропитания и заземления. Изложенный материал соответствует курсу лекций, которые автор вел в течение 5 лет для студентов.

Исследование и оценка параметров сигналов в распределенных информационных системах. Для студентов технических специальностей - читать онлайн бесплатно ознакомительный отрывок

Исследование и оценка параметров сигналов в распределенных информационных системах. Для студентов технических специальностей - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Геннадий Вильдяйкин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Математическая модель акустического поля

Акустика – область физики, исследующая упругие колебания и волны, их взаимодействие с веществом и применение.

Во всех средах (жидких, газообразных и твердых) распространение упругих волн происходит так: частицы среды в волне приобретают скорость, деформируются, и в них возникают упругие напряжения, которые и передают волну дальше.

Акустика жидкостей и газов рассматривается на основе гидродинамики, где возмущения передаются силами давления, которые возникают при сжатии и расширении частиц. В твердых телах возникают еще и поля (сдвиговые) упругих напряжений.

Математическая модель акустического поля представлена полной системой уравнений акустики, которая состоит из уравнений движении, уравнения непрерывности и уравнения состояния. Уравнения акустики кратко можно характеризовать так. [3].

Уравнения Эйлера – уравнения движения частиц под действием сил упругости среды. Рассмотрим частицу среды малого объема, ограниченную поверхностью. Так как частица мала, а характеристики среды непрерывны, можем считать плотность по всей среде постоянной, массу частицы приравнять произведению плотности на объем. Далее, полагая, что вся частица движется как одно целое, найти ее ускорение как производную dv/dt ее скорости v по времени t. Рассмотрим давление p и сторонние cилы F а. ст,действующие на частицу со стороны окружающей среды, – силы давления.

Применяя к частице, находящейся под действием только сил давления, второй закон Ньютона и используя теорему Гаусса – Остроградского заменяя интеграл по поверхности интегралом по объему, а также учитывая непрерывности всех характеристик среды, что позволяет градиент давления на протяжении малой частицы считать постоянным, получить уравнение Эйлера (2.1).

Если помимо сил давления на среду действуют сторонние силы Fа. ст, распределенные с плотностью ρ на единицу объема, то уравнение (2.1) примет вид (2.2).

Уравнение движения среды есть нелинейное векторное уравнение первого порядка относительно характеристик среды р, v, ρ.

Уравнение неразрывности среды. Если в среде не образуется разрывов (как, например, разрывы при кавитации), то уравнение неразрывности применимо к исследуемой среде.

Рассмотрим объем среды, ограниченный неподвижной поверхностью S. Если разрывов нет, то приращение массы в объеме равно массе среды, втекшей через поверхность S. Запишем скорость приращения массы в малом объеме, массу, втекающая за единицу времени через элемент поверхности dS, равную v dS.

Заменяя интеграл по поверхности интегралом по объему, получим уравнение неразрывности в виде (2.3).

Уравнение неразрывности скалярно и, как уравнение Эйлера, нелинейно относительно характеристик среды. В дальнейшем встретятся случаи движения среды, удовлетворяющие вместо уравнения неразрывности уравнению вида (2.4).

Это уравнение можно также интерпретировать как уравнение неразрывности, но примененное к среде, куда поступает «из ниоткуда» дополнительное «стороннее» количество среды. Величину Vст называют плотностью сторонней объемной скорости: она дает дополнительный объем, поступающий за единицу времени в единичный объем.

Уравнение состояния связывает давление, плотность (или сжатие) и температуру среды. Уравнение состояния не имеет какого-либо стандартного вида для всех веществ, наподобие уравнения Эйлера или уравнения неразрывности. В общем виде уравнение можно записать в виде (2.5).

Уравнение состояния также нелинейно.

Если при данном движении среды плотность однозначно связана с давлением (так бывает обычно в акустике), то уравнение состояния можно записать в виде (2.6).

Система уравнений (2.1), (2.3) и (2.5) или (2.6) является полной системой уравнений гидродинамики.

Волновое уравнение. Полная система уравнений гидродинамики это – нелинейные, точные уравнения. В дальнейшем будем пользоваться приближенными уравнениями линейного типа. Исключая все величины, характеризующую волну, кроме давления приведем полную систему уравнений акустики к одному уравнению относительно давления p (2.7).

Это волновое уравнение второго порядка для давления, где с – скорость звука.

Если записать выражение для давления гармонического колебания волн и затем подставить его в волновое уравнение (2.7), то получим волновое уравнения Гельмгольца (2.8).

Математическая модель электромагнитного поля Математическая модель - фото 3

Математическая модель электромагнитного поля

Математическая модель электромагнитного поля представляет систему уравнений электромагнитного поля в полном виде или систему уравнений Максвелла [4].

Электромагнитное поле характеризуются следующими векторными величинами: E и H – векторы напряженности электрического и магнитного полей, D и B – векторы электрической и магнитной индукции, I и Im – плотность токов электрической и магнитной проводимости, ρ и ρ m – плотность электрических и магнитных зарядов.

Дифференциальная форма системы уравнений выглядит (3.1 – 3.7), где – магнитная проницаемость, – диэлектрическая проницаемость, – удельная проводимость

Эти уравнения будут исходными при рассмотрение переменных электромагнитных полей и процессов.

Первое уравнение Максвелла. является дифференциальной формулировкой закона полного тока. Физический смысл 1-го уравнения Максвелла: источниками вихревых магнитных полей являются токи проводимости и токи смещения.

Величина δв правой части (3.1) есть плотность тока проводимости. Это вектор, указывающий направление движения зарядов.

Законы электромагнетизма – это законы макроскопических процессов, в которых усредняется действие огромных количеств элементарных частиц материи. С точки зрения этих законов, среда представляется сплошной.

Второе уравнение Максвелла (3.2) является дифференциальной формулировкой закона электромагнитной индукции и выражает скорость изменения магнитной индукции В через пространственную производную (rot) напряженности электрического поля Е.

Физический смысл: вихревое электрическое поле создается переменным магнитным полем

Третье уравнение Максвелла является дифференциальной формулировкой теоремы Гаусса для электрических полей. Физический смысл: источниками электрического поля (векторов Е и D) являются заряды с плотностью ρ. Дифференциальные уравнения (3.3) показывает, что расходимость электрической индукции равна объемной плотности заряда.

Четвертое уравнение Максвелла является дифференциальной формулировкой теоремы Гаусса для магнитных полей. Физический смысл. Дивергенция вектора В в любой точке пространства равняется нулю, т.е. – источников нет (магнитные заряды в природе отсутствуют). Нет ни стыков, ни источников. Линии магнитной индукции непрерывны.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Геннадий Вильдяйкин читать все книги автора по порядку

Геннадий Вильдяйкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Исследование и оценка параметров сигналов в распределенных информационных системах. Для студентов технических специальностей отзывы


Отзывы читателей о книге Исследование и оценка параметров сигналов в распределенных информационных системах. Для студентов технических специальностей, автор: Геннадий Вильдяйкин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x