Виктор Дудихин - Информационные технологии в управлении. Аналитическая платформа Deductor. Учебное пособие по проведению практических занятий со студентами управленческих направлений подготовки
- Название:Информационные технологии в управлении. Аналитическая платформа Deductor. Учебное пособие по проведению практических занятий со студентами управленческих направлений подготовки
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785449012579
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Дудихин - Информационные технологии в управлении. Аналитическая платформа Deductor. Учебное пособие по проведению практических занятий со студентами управленческих направлений подготовки краткое содержание
Информационные технологии в управлении. Аналитическая платформа Deductor. Учебное пособие по проведению практических занятий со студентами управленческих направлений подготовки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Известно, что нервная система и мозг человека состоят из нейронов, соединенных между собой нервными волокнами. Нервные волокна способны передавать электрические импульсы между нейронами. Нейрон является особой биологической клеткой, которая обрабатывает информацию. Элементарным преобразователем в искусственных нейронных сетях является искусственный нейрон, названный так по аналогии с биологическим прототипом.
Принципиальное отличие искусственных нейросетей от обычных программных систем состоит в том, что первые не требуют программирования и их можно обучить тому, что требуется пользователю.
Одна из наиболее распространенных архитектур нейронных сетей персептрон. Он построен по принципу иерархической сети, где каждый нейрон более высокого уровня соединен своими входами с выходами нейронов предыдущего слоя.
Для нейросетевой модели обработки данных характерно следующее:
– однородность системы (элементы нейронной сети одинаковы и просты, все определяется структурой связи)
– надёжность системы, построенной из ненадёжных элементов, за счёт избыточного числа связей
– «голографичность», предопределяющая, что при разрушении части система сохраняет свои свойства.
Структура искусственного нейрона и нейронной сети
Схема искусственного нейрона представлена на рис. А. Сумматор ∑выполняет сложение сигналов Х i, поступающих по синаптическим связям от других нейронов, а также внешних входных сигналов. Синапсы осуществляют связь между нейронами, умножают входной сигнал Х iна число W i, характеризующее силу связи между нейронами.
Нелинейный преобразователь f реализует нелинейную функцию преобразования значение выхода сумматора, согласно функции активации (передаточной функции) нейрона. Структура искусственного нейрона представлена ниже

Данный вычислительный элемент – это весьма упрощенной математической моделью биологических нейронов. Поэтому подобные структуры иногда называют нейроноподобными элементами или формальными нейронами.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Примечания
1
Учебную версию Deductor Studio Academic можно скачать бесплатно по адресу https://basegroup.ru/deductor/download.
Интервал:
Закладка: