Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления

Тут можно читать онлайн Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Изд-во НЦ ЭНАС, год 2003. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления краткое содержание

Краткий курс логики: Искусство правильного мышления - описание и краткое содержание, автор Дмитрий Гусев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга представляет собой краткое изложение одной из древнейших наук – логики Аристотеля. Её завершают тестовые задания, сборник занимательных логических задач и краткий словарь терминов. Автор – кандидат философских наук, доцент Московского педагогического государственного университета – с неизменным успехом использует материалы книги в многолетней преподавательской практике.

Книга адресована учащимся старших классов общеобразовательных учреждений (школ с углублённым изучением предметов социально-гуманитарного цикла, гимназий и лицеев). Она сможет помочь студентам высших учебных заведений сделать изучение логики интересным и увлекательным. Книга будет полезна всем интересующимся логикой и другими гуманитарными науками.

Краткий курс логики: Искусство правильного мышления - читать онлайн бесплатно ознакомительный отрывок

Краткий курс логики: Искусство правильного мышления - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Дмитрий Гусев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3.10. Виды и правила аналогии

В умозаключениях по аналогии на основе сходства предметов в одних признаках делается вывод об их сходстве и в других признаках. Структура аналогии может быть представлена следующей схемой:

Предмет A имеет признаки a, b, c, d.

Предмет B имеет признаки a, b, c.

Вероятно, предмет B имеет признак d.

В ней A и B – это сравниваемые или уподобляемые друг другу предметы (объекты); a, b, c – сходные признаки; d – это переносимый признак. Приведём пример умозаключения по аналогии:

Сочинения философа Секста Эмпирика, выпущенные издательством «Мысль» в серии «Философское наследие», снабжены вступительной статьёй, комментариями и предметно-именным указателем.

В аннотации к книжной новинке – сочинениям философа Фрэнсиса Бэкона – говорится, что они выпущены издательством «Мысль» в серии «Философское наследие», и снабжены вступительной статьёй и комментариями.

Скорее всего, выпущенные сочинения Фрэнсиса Бэкона так же, как и сочинения Секста Эмпирика, снабжены предметно-именным указателем.

В данном случае сравниваются (сопоставляются) два объекта: ранее изданные сочинения Секста Эмпирика и выходящие в свет сочинения Фрэнсиса Бэкона. Сходные признаки этих двух книг состоят в том, что они выпускаются одним и тем же издательством, в одной и той же серии, снабжены вступительными статьями и комментариями. На основании этого с большой степенью вероятности можно утверждать, что если сочинения Секста Эмпирика снабжены предметно-именным указателем, то им будут снабжены и сочинения Фрэнсиса Бэкона. Таким образом, наличие предметно-именного указателя является переносимым признаком в рассмотренном примере (см. также параграф 3.1., где в качестве уподобляемых объектов выступают планеты Земля и Марс, а переносимый признак – это наличие на планете жизни).

Умозаключения по аналогии делятся на два вида:

1. Аналогия свойств, в которой сравниваются два предмета, а переносимым признаком является какое-либо свойство этих предметов.

Приведённый выше пример представляет собой аналогию свойств.

2. Аналогия отношений, в которой сравниваются две группы предметов, а переносимым признаком является какое-либо отношение между предметами внутри этих групп. Пример аналогии отношений:

В математической дроби числитель и знаменатель находятся в обратном отношении: чем больше знаменатель, тем меньше числитель. Человека можно сравнить с математической дробью: числитель её – это то, что он собой представляет на самом деле, а знаменатель – то, что он о себе думает, как себя оценивает. Вероятно, что чем выше человек себя оценивает, тем хуже он становится на самом деле.

Как видим, сравниваются две группы объектов. Одна – это числитель и знаменатель в математической дроби, а другая – реальный человек и его самооценка. Причём отношение обратной зависимости между объектами переносится из первой группы во вторую.

В силу вероятностного характера своих выводов аналогия, конечно же, более близка к индукции, чем к дедукции. Неудивительно поэтому, что основные правила аналогии, соблюдение которых позволяет повысить степень вероятности её выводов, во многом напоминают уже известные нам правила неполной индукции. Во-первых, необходимо делать вывод на основе возможно большего количества сходных признаков у уподобляемых предметов. Во-вторых, эти признаки должны быть разнообразными. В-третьих, сходные признаки должны являться существенными для сравниваемых предметов.

В-четвёртых, между сходными признаками и переносимым признаком должна присутствовать необходимая (закономерная) связь. Первые три правила аналогии фактически повторяют правила неполной индукции. Пожалуй, наиболее важным является четвёртое правило о связи сходных признаков и переносимого признака. Вернёмся к примеру аналогии, рассмотренному в начале данного параграфа. Переносимый признак – наличие предметно-именного указателя в книге – тесно связан со сходными признаками – издательство, серия, вступительная статья, комментарии (книги такого жанра обязательно снабжаются предметно-именным указателем). Если переносимый признак (например, объём книги) не связан закономерно со сходными признаками, то вывод умозаключения по аналогии может получиться ложным:

Сочинения философа Секста Эмпирика, выпущенные издательством «Мысль» в серии «Философское наследие», снабжены вступительной статьёй, комментариями и имеют объём в 590 страниц.

В аннотации к книжной новинке – сочинениям философа Фрэнсиса Бэкона – говорится, что они выпущены издательством «Мысль» в серии «Философское наследие», и снабжены вступительной статьёй и комментариями.

Скорее всего, выпущенные сочинения Фрэнсиса Бэкона, так же, как и сочинения Секста Эмпирика, имеют объём в 590 страниц.

Несмотря на вероятностный характер выводов, умозаключения по аналогии имеют немало достоинств. Аналогия представляет собой хорошее средство иллюстрации и разъяснения какого-либо сложного материала, является способом придания ему художественной образности, часто наводит на научные и технические открытия.

Проверьте себя:

1. Какова структура умозаключений по аналогии?

2. Чем отличается аналогия свойств от аналогии отношений?

Приведите по одному примеру (за исключением тех, которые рассмотренны в параграфе) для каждого из этих видов аналогии.

3. Каковы основные правила умозаключений по аналогии, соблюдение которых позволяет повысить степень вероятности её выводов?

4. В чём заключаются достоинства и недостатки умозаключений по аналогии?

5. Определите вид аналогии в приведённых ниже примерах:

1) Жабры для рыб – это то же самое, что лёгкие для млекопитающих .

2) Повесть Артура Конан Дойла «Знак четырёх» о приключениях сыщика Шерлока Холмса, отличающаяся динамичным сюжетом, мне очень понравилась. Я не читал повесть Артура Конан Дойла «Собака Баскервиллей», но знаю, что она посвящена приключениям благородного сыщика Шерлока Холмса и отличается динамичным сюжетом. Скорее всего, эта повесть мне также очень понравится.

3) Сущность планетарной модели атома Эрнеста Резерфорда состоит в том, что в нём вокруг положительно заряженного ядра по разным орбитам движутся отрицательно заряженные электроны; так же, как и в Солнечной системе планеты движутся по разным орбитам вокруг единого центра – Солнца.

Глава 4

Основные законы логики

4.1. Закон тождества

Первый и наиболее важный закон логики – это закон тождества, который был сформулирован Аристотелем в трактате «Метафизика» следующим образом: «…иметь не одно значение – значит не иметь ни одного значения; если же у слов нет (определённых) значений, тогда утрачена всякая возможность рассуждать друг с другом, а в действительности – и с самим собой; ибо невозможно ничего мыслить, если не мыслить (каждый раз) что-нибудь одно» [4] . Сборник упражнений по логике. – Минск: Университетское, 1990. – С. 95. . Можно было бы добавить к этим словам Аристотеля известное утверждение о том, что мыслить (говорить) обо всём – значит не мыслить (не говорить) ни о чём.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Дмитрий Гусев читать все книги автора по порядку

Дмитрий Гусев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Краткий курс логики: Искусство правильного мышления отзывы


Отзывы читателей о книге Краткий курс логики: Искусство правильного мышления, автор: Дмитрий Гусев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x