Мичио Каку - Параллельные миры
- Название:Параллельные миры
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мичио Каку - Параллельные миры краткое содержание
Эта книга, конечно же, не развлекательное чтение. Это то, что называется «интеллектуальный бестселлер». Чем, собственно, занимается современная физика? Какова нынешняя модель Вселенной? Как понимать «многомерность» пространства и времени? Что такое параллельные миры? Автор этой книги, Мичио Каку, очень авторитетный ученый-физик. Поэтому в «Параллельных мирах» вы не найдете помпезной «псевдонауки». Мичио Каку — опытный литератор. Он умеет писать просто. И в этой книге вы не найдете сложных математических формул. Наконец, Мичио Каку — японец, воспитывавшийся в буддийской религии. И он умеет передать читателю свое чисто восточное спокойное совершенством нашего огромного Мироздания.
Параллельные миры - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В 1974 году я решил заняться этим вопросом. Вместе с коллегой Кейджи Киккавой из Университета Осаки нам удалось вывести самую суть полевой теории струн. Мы смогли суммировать всю информацию, содержащуюся в струнной теории, в уравнении длиной менее четырех сантиметров Теперь, когда полевая теория струн была сформулирована, необходимо было убедить физическое сообщество в ее силе и красоте. Я принял участие в конференции по теоретической физике в Аспенском центре в Колорадо тем же летом и провел семинар с небольшой группой ведущих физиков. Я порядком нервничал: среди слушателей были два нобелевских лауреата, Марри Гелл-Манн и Ричард Фейнман, которые славились тем, что любили задавать едкие и остроумные вопросы, заставляя оратора нервничать. (Однажды во время лекции, которую проводил Стивен Вайнберг, он начертил на доске угол, отмеченный буквой W, который был назван углом Вайнберга в его честь. Фейнман задал вопрос о том, что означала буква W Вайнберг еще только начал отвечать, как Фейнман крикнул: «Неверно!», что вызвало смех в зале. Что же, может быть, Фейнман и развлек слушателей, но последним смеялся все же Вайнберг. Угол на доске представлял важную часть теории Вайнберга, объединившей электромагнитное и слабое взаимодействие и в конечном итоге принесшей ему Нобелевскую премию.)
В ходе своей лекции я подчеркнул тот факт, что струнная теория поля представила бы наиболее простой и всесторонний подход к струнной теории, в значительной степени представлявшей собой разношерстное скопление разрозненных формул. При помощи струнной теории поля всю теорию можно было суммировать в одном-единственном, не очень длинном уравнении: все свойства модели Венециано, все элементы бесконечной аппроксимации возмущения, все свойства колеблющихся струн — все можно было вывести из уравнения, которое поместилось бы в китайском печенье с предсказаниями. Я обратил внимание на симметрии струнной теории, которые придавали ей прелесть и силу. Когда струны движутся в пространстве-времени, они описывают двумерные поверхности, похожие на полоски. Эта теория остается неизменной вне зависимости от координат, которыми мы можем пользоваться для описания этого двумерного пространства. Я никогда не забуду, как после лекции ко мне подошел Фейнман и сказал: «Я не во всем могу согласиться с вами по поводу струнной теории, но лекция, прочитанная вами, — одна из самых красивых, которые я когда-либо слышал».
Сразу после появления струнной теории ее начали активно разрабатывать, снимая с нее покров тайны. Клод Лавлейс из Университета Рутгерс обнаружил в модели Венециано крошечный математический изъян, исправить который можно было только в том случае, если Предположить, что пространство-время обладает 26 измерениями. Подобным образом и суперструнная модель Неве, Шварца и Рамона Могла существовать только в десяти измерениях. Физиков это шокировало. Такого наука не видела за всю свою историю. Нигде больше мы не встретим теории, которая определяет количество измерений сама для себя. Например, теории Ньютона и Эйнштейна могут быть сформулированы для любого числа измерений. Знаменитый закон тяготения, построенный на обратных квадратах, можно обобщить в законе обратных кубов для четырех измерений. Что же касается струнной теории, то она могла существовать только в особых измерениях.
Спрактическойточкизренияэтобылокатастрофой. Общепринято было считать, что наш мир существует в трех пространственных измерениях (длина, высота и ширина) и одном временном. Принять теорию, основанную на десяти измерениях, значило признать, что она граничит с фантастикой. Струнные теоретики превратились в объект насмешек. (Джон Шварц вспоминает, как он ехал в лифте с Ричардом Фейнманом, который в шутку сказал: «Ну что, Джон, и в скольких измерениях вы живете сегодня?») Как струнные физики ни пытались спасти модель от краха, она все же довольно быстро скончалась. Только самые упорные продолжили работу над струнной теорией в тот период, и они были весьма немногочисленны.
Двоими из тех, кто продолжил работу над струнной теорией в те унылые годы, были Джон Шварц из Калифорнийского технологического института и Джоэл Шерк из Высшей технической школы в Париже. До того времени предполагалось, что струнная модель создана для описания только сильных ядерных взаимодействий. Но была одна проблема: модель предсказывала существование частицы, которая не встречалась в сильных взаимодействиях, — любопытной частицы с нулевой массой, обладающей двумя квантовыми единицами спина. Ни одна из попыток избавиться от этой надоедливой частицы не увенчалась успехом. Каждый раз, когда ученые пытались исключить эту нежелательную частицу со спином 2, вся модель разрушалась и теряла свои волшебные свойства. Казалось, в этой нежелательной частице каким-то образом содержался секрет всей модели.
Затем Шерк и Шварц выдвинули дерзкое предположение. Возможно, изъян на самом деле был благословением. Если они интерпретировали эту назойливую частицу со спином в 2 как гравитон (квант гравитации из теории Эйнштейна), то тогда оказывалось, что струнная теория включала в себя теорию гравитации Эйнштейна! (Иными словами, общая теория относительности Эйнштейна просто выглядит как самая низкая вибрация или нота суперструны.) По иронии судьбы, в то время как в других квантовых теориях физики усиленно пытаются не допускать никакого упоминания о гравитации, струнная теория просто-напросто требует ее присутствия. (В сущности, это одна из привлекательных сторон струнной теории — она должна включать гравитацию, иначе теория окажется противоречивой.) После этого отважного рывка ученые поняли, что струнная теория была неверно применена к неверной проблеме. Струнной теории предстояло стать не просто теорией сильных ядерных взаимодействий — ей было предначертано стать теорией всего. Как отметил Виттен, привлекательной стороной струнной теории является то, что она требует присутствия гравитации. В то время как в стандартные теории поля десятилетиями не удавалось включить гравитацию, в струнной теории она неотъемлемый элемент.
Однако на конструктивную идею Шерка и Шварца в то время никто не обратил внимания. Для того чтобы струнная теория описывала как гравитацию, так и субатомный мир, требовалось, чтобы струны были длиной всего лишь в 10 зз см (длина Планка). Иными словами, они были в миллиард миллиардов раз меньше протона. Для большинства физиков это было чересчур.
Однако к середине 1980-х годов все другие попытки создания единой теории поля потерпели неудачу. Те теории, которые наивно пытались присоединить гравитацию к Стандартной модели, утопали в болоте бесконечностей (вскоре я поясню эту проблему). Каждый раз, когда ученые пытались искусственным образом соединить гравитацию с другими квантовыми силами, это приводило к появлению математических противоречий, которые убивали всю теорию. (Эйнштейн считал, что у Бога, возможно, не было выбора при создании Вселенной. Одной из причин тому может быть факт, что лишь одна-единственная теория свободна от всех этих математических противоречий.)
Читать дальшеИнтервал:
Закладка: