Коллектив Авторов - Концепции современного естествознания
- Название:Концепции современного естествознания
- Автор:
- Жанр:
- Издательство:046ebc0b-b024-102a-94d5-07de47c81719
- Год:2008
- Город:Спб.
- ISBN:978-5-91180-778-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив Авторов - Концепции современного естествознания краткое содержание
В учебнике, написанном коллективом преподавателей РГПУ им. Герцена под руководством Л. А. Михайлова – декана факультета безопасности жизнедеятельности, лауреата премии Президента РФ, представлены новейшие концепции всех естественных наук: биологии, генетики, физики, химии, математики, информатики, биохимии, геологии, антропологии и других. В книге раскрываются социальные последствия новых научных открытий, даются современные технологии обучения в области концепций современного естествознания.
Учебник полностью соответствует Государственному образовательному стандарту и имеет гриф УМО. Он предназначен для студентов высших учебных заведений гуманитарного, психолого-педагогического, естественнонаучного направлений.
Концепции современного естествознания - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В живых организмах важную роль играют три класса молекул – мономеров: аминокислоты, нуклеотиды, моносахариды. Они служат строительным материалом для полимерных биологических макромолекул, таких как белки, нуклеиновые кислоты и полисахариды. Размеры мономеров колеблются в диапазоне 0,5–1,0 нм, а макромолекул – 5-300 нм. Диаметр молекулы аминокислоты порядка 0,5 нм, хромосомы – примерно 1 нм, а атомов углерода и водорода – около 0,4 нм. Для сравнения средний диаметр соматической клетки 10–20 мкм, растительной – 30–50 мкм. Таким образом, атомы примерно в 100 000 раз меньше клетки.
Все живые организмы, их клетки, органеллы как субструктуры клеток, выполняющие специфические функции, являются в целом совокупностями макромолекул. Живые организмы содержат четыре основных класса биополимеров: белки, нуклеиновые кислоты, углеводы и липиды. Они являются структурной основой всех живых организмов и играют важнейшую роль в процессах жизнедеятельности.
Белки – это высокомолекулярные органические соединения, макромолекулы которых построены из остатков 20 аминокислот (мономеров). Белки играют первостепенную роль в процессах жизнедеятельности всех живых организмов. Им свойственны разнообразные функции: структурная – построение клеток и тканей; регуляторная – ее выполняют некоторые из гормонов; защитная – выполняют антитела; транспортная – выполняет гемоглобин; энергетическая и т. д. Только в организме человека, например, насчитывается свыше 10 млн различных белков. Без белков невозможен обмен веществ. Биосинтез белков идет при участии нуклеиновых кислот. На долю белка приходится примерно 50 % сухой массы всех органических соединений клетки.
Нуклеиновые кислоты, или полинуклиотиды. Эти биополимеры построены из большого числа остатков нуклиотидов и являются составной частью всех живых систем. Этим макромолекулам принадлежит ведущая роль в биосинтезе белков и передаче наследственных признаков организма. Эти кислоты сходны по своему составу и строению, но значительно различаются по молекулярному весу, который составляет диапазон от нескольких десятков тысяч до 150 млн. Существует 2 типа нуклеиновых кислот – ДНК и РНК. ДНК – дезоксирибонуклеиновая кислота – содержит генетическую информацию о последовательности аминокислот в полипептидных цепях и определяет саму структуру белков. РНК – рибонуклеиновая кислота несет ответственность за создание белков. Порядок расположения составляющих молекулы ДНК и РНК нуклеотидов определяет порядок расположения аминокислот, а также их воспроизведение в первичных структурах белков. Следовательно, через молекулы нуклеиновых кислот передается информация о различных наследственных свойствах структур живых организмов и идет реализация механизма наследственности.
Коацерваты
Возрастающая концентрация «первичного бульона» органических веществ приводила к их взаимодействию, объединению и обособлению в некие мелкие структуры в водном растворе, которые А. Опарин назвал коацерватными каплями или коацерватами. Следует отметить, что в настоящее время структуры, подобные коацерватам, получают искусственным путем, смешивая растворы разных белков. Коацерваты, по А. Опарину, – это мельчайшие коллоидные образования типа капель, обладающие осмотическими свойствами. Благодаря взаимодействию электрических зарядов в слабых растворах происходит агрегация молекул. Молекулы воды создают поверхность раздела вокруг образовавшегося агрегата. Предположительно, что уже одновременно с образованием полимеров (полимеризации) шло и образование биологических мембран, ограничивающих вещества коацервата от среды.
Образование мембран считается трудной задачей химической эволюции. Без них не может быть даже самой примитивной клетки. Предполагается, что мембранные структуры, как и ферменты, возникли в ходе образования коацерватов. Биологические мембраны – это белково-липидные агрегаты, характеризующиеся полупроницаемостью. Они ограничивают вещество коацервата от окружающей среды, придавая прочность коацерватной «упаковки».
Коацерваты имеют сложную организацию и обладают рядом свойств примитивных живых систем. Так, они способны к поглощению из окружающей среды различных веществ, которые вступают во взаимодействие с веществами коацервата. Это похоже на первичную форму усвоения веществ (ассимиляцию). Образующиеся в коацервате продукты распада выделяются наружу, проходя через полупроницаемую перегородку. Однако, в принципе, коацерваты нельзя отнести к живым системам, поскольку они не обладают способностью к саморегуляции и самовоспроизведению. Они обладают лишь предпосылками живых систем.
Образование простейших форм живых организмов
Переход коацерватов как преджизненных систем к живому – это главный вопрос в учении о происхождении жизни. Он связан с действием механизма конвариантной редупликации. В ходе предбиологического отбора выживали те системы, которые имели не только способность к обмену веществ, но и особое строение макромолекул. Это обусловило появление главного качества живого – наследственности. При появлении устойчивого механизма воспроизведения генетической информации эра химической эволюции закончилась. Наступило время биологической эволюции, эра естественного отбора.
С образованием коацерватов как предвестников живой клетки В. Вернадский связывает появление первичного круговорота веществ в природе, обусловленного взаимным обменом органических веществ в процессе их синтеза или распада. При этом уже имел место процесс естественного отбора: более устойчивые образования сохранялись, а неустойчивые – распадались. В процессе отбора устойчивые коацерваты не теряли свою структуру даже при делении. Это характеризует уже самоорганизацию и самовоспроизводство.
Переход систем к самовоспроизведению, то есть к матричному синтезу белков являлся огромным качественным скачком в эволюции материи. Как произошел этот скачок, пока не ясно. Основная сложность в том, что для саморепродукции нуклеиновых кислот необходимы ферментные белки, а для создания белков – нуклеиновые кислоты. Как разорвать этот круг? Как объяснить, что на стадии предбиологического отбора произошло объединение способностей к самовоспроизводству полинуклиотидов с каталитической активностью полипептидов в условиях разобщения в пространстве и времени начальных и конечных продуктов реакции.
Наиболее перспективными в этом отношении являются гипотезы, основывающиеся на принципе самоорганизации и представлениях о гиперциклах.
Гиперциклы – это системы, связывающие самовоспроизводящиеся (автокаталитические) единицы друг с другом посредством циклической связи. В них происходит самоорганизация химических реакций, так что циклическая организация одного уровня является элементом цикла другого, уже более высокого уровня. По мнению немецкого физико-химика М. Эйгана (род. в 1927 г.), гиперциклы определяют репродукцию последующих белков, а также осуществляют роль самовоспроизводящейся системы химических реакций. Гиперцикл, сформировавшийся из нуклеиновых кислот, которые способны с помощью ферментов синтезировать белки, обеспечивает отбор макромолекул с объемом информации, достаточным для возникновения живого организма. Циклические реакции в процессе эволюции повторяются, и каждое повторение ведет к образованию новых, более совершенных систем управления. Такое развитие обеспечивает последующему поколению организмов все большую адаптацию к окружающей среде, увеличивая дальнейшее разнообразие их реакций. При этом происходит усложнение структур, возрастает уровень их организации, что уменьшает энтропию внутренних состояний.
Читать дальшеИнтервал:
Закладка: