LibKing » Книги » Научные и научно-популярные книги » Прочая научная литература » Сергей Викторов - Химия лунного грунта

Сергей Викторов - Химия лунного грунта

Тут можно читать онлайн Сергей Викторов - Химия лунного грунта - бесплатно полную версию книги (целиком). Жанр: Прочая научная литература, издательство Знание, год 1978. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Сергей Викторов - Химия лунного грунта

Сергей Викторов - Химия лунного грунта краткое содержание

Химия лунного грунта - описание и краткое содержание, автор Сергей Викторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В исследованиях химического состава грунта Луны, а в перспективе и планет Солнечной системы особое место занимает рентгеновский изотопный флуоресцентный метод анализа (РИФМА). В брошюре участники создания аппаратуры РИФМА, используемой при работе советских «Луноходов», рассказывают о физических основах этого метода, а также приводят результаты химического анализа лунного грунта, полученные с помощью как данного, так и других методов, применявшихся, В частности, при работе некоторых американских автоматических станций.

Брошюра рассчитана на студентов и преподавателей вузов, учителей средних школ, а также на более широкий круг читателей, интересующихся современными достижениями в области космических исследований.

Химия лунного грунта - читать онлайн бесплатно полную версию (весь текст целиком)

Химия лунного грунта - читать книгу онлайн бесплатно, автор Сергей Викторов
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать
Рис 1 Принцип работы прибора основанного на методе рентгеновского - фото 1

Рис. 1. Принцип работы прибора, основанного на методе рентгеновского флуоресцентного анализа: 1 — панели с радиоактивными источниками; 2 — исследуемый грунт; 3 — блок детекторов флуоресцентного излучения

Перейдем теперь к методу рентгеновского спектрометрического анализа химического состава и рассмотрим одно из перспективных его направлений — так называемый «радиоизотопный флуоресцентный анализ».

Если взять радиоактивный источник и с его помощью облучить какое-либо вещество (рис. 1), то под воздействием внешнего излучения произойдет перестройка внешних оболочек атомов. Сначала атомы перейдут в возбужденное состояние, характеризующееся избытком их энергии, но поскольку такое состояние неустойчиво, то через доли секунды атомы освободятся от избыточной энергии, испустив кванты рентгеновского излучения. Это явление называется флуоресценцией.

Примечательно, что энергия кванта для данного вида атомов строго постоянна: различные атомы испускают рентгеновские кванты разной, но характерной для них энергии. Например, энергия этих рентгеновских квантов для алюминия около 1,5 кэВ, кремния — 1,7 кэВ, калия — 3,3 кэВ, кальция — 3,7 кэВ, железа — 6,4 кэВ. Таким образом, определив энергию квантов, можно узнать, какие атомы содержатся в изучаемом веществе, а по интенсивности излучения данной энергии — найти количество атомов в данном веществе.

Для подсчета рентгеновских квантов и одновременно измерения их энергии используются специальные детекторы — пропорциональные счетчики. Попавший в такой детектор рентгеновский квант вызывает ионизацию газа, которым наполнен счетчик, и под действием высокого напряжения, приложенного к счетчику, в нем возникает электрический импульс. Если правильно подобрать величину высокого напряжения, а также давление и сорт газа, размеры детектора, то амплитуда электрического импульса будет пропорциональна энергии рентгеновского кванта (отсюда и название этого детектора).

Совокупность электрических импульсов позволяет получить спектр излучения исследуемого вещества (рис. 2). На этом рисунке мы видим несколько «горбов» — это и есть спектральные «линии» излучения. Спектральные линии теоретически должны быть очень узкими, но из-за специфичности данных детекторов они становятся «размытыми», хотя положение максимумов линий не меняется и соответствует теоретическим значениям.

Рис 2 Пример спектра флуоресцентного излучения полученного при лабораторных - фото 2

Рис. 2. Пример спектра флуоресцентного излучения, полученного при лабораторных исследованиях в вакуумной камере

«Размытие» линий затрудняет их анализ: с помощью пропорциональных счетчиков нельзя определить в отдельности интенсивность двух близких по энергиям линий, поскольку они сливаются в одну. Алюминий и кремний (а также магний) дают одну общую «линию» в спектре горной породы, калий вместе с кальцием образуют другую «линию». Третья «линия» на этом рисунке принадлежит железу. Разница в энергиях между этими тремя «линиями» достаточно велика, так что они довольно легко различаются. Таким образом, полученный спектр дает возможность получить определенную информацию при использовании рентгено-флуоресцентного метода.

Каким же образом определяется интенсивность реальных спектральных линий отдельных элементов? Здесь на помощь приходит так называемый «метод фильтров». Дело в том, что поглощение рентгеновского излучения в каком-либо веществе зависит от энергии этого излучения весьма сложным образом: наряду с плавной зависимостью существуют и резкие перепады — скачки. Следовательно, взаимодействие рентгеновских квантов, незначительно отличающихся по энергии, с каким-либо веществом может весьма различаться для каждого из этих квантов. А это приводит к тому, что сильно отличается и вероятность прохождения этих квантов сквозь вещество. Например, если на пути рентгеновских квантов, соответствующих флуоресцентному излучению алюминия и кремния, поставить алюминиевую фольгу толщиной 10 мкм, то она пропустит 44 % излучения алюминия и лишь 0,008 % излучения кремния. Таким образом, пропуская линию алюминия в 5500 раз лучше, чем линию кремния, такая фольга будет «отфильтровывать» рентгеновское излучение. Схематически это изображено на рис. 3.

Рис 3 Принцип действия характеристического фильтра применяемого для - фото 3

Рис. 3. Принцип действия характеристического фильтра, применяемого для разделения линий элементов, имеющих близкие по значению энергии флуоресцентного излучения

Можно подобрать фильтры для пар различных элементов: алюминий + кремний, калий + кальций и т. д. Поскольку при подобной «фильтрации» интенсивность одной из линий значительно ослаблена (причем заранее известна степень ослабления), то сравнение спектров излучения исследуемого образца, полученных с фильтрами и без фильтров, позволяет в отдельности определить интенсивности всех неразделенных линий.

Важно отметить, что на основе рентгеновского изотопного флуоресцентного метода можно создать довольно простую аппаратуру для проведения химического анализа вещества в космических условиях, удовлетворяющую всем поставленным выше требованиям. Радиоактивные источники, необходимые для облучения грунта, абсолютно надежны в работе, они не требуют настройки, наладки и не нуждаются в электрической энергии. Пропорциональные счетчики, регистрирующие рентгеновское излучение грунта, компактны и легки. Информацию легко перевести в электрические величины — амплитуды импульсов, что очень удобно для передачи по линиям космической радиосвязи. Наконец, исследуемые рентгеновские спектры довольно просты (в них всего несколько линий) по сравнению с оптическими. К настоящему времени в исследованиях химического состава грунта, проведенных непосредственно на поверхности Луны, применялись только два из перечисленных методов. Рентгеновский флуоресцентный метод анализа, предложенный коллективом советских ученых, с успехом был применен при работе автоматических самоходных аппаратов «Луноход-1 и -2». Американские ученые на станциях «Сервейер-5, -6 и -7» использовали метод «обратно рассеянных альфа-частиц» (подробное описание которого будет дано ниже), но впоследствии уже на марсианских станциях «Викинг-1 и -2» они тоже применили рентгеновский флуоресцентный метод.

ИЗМЕРЕНИЯ С ОРБИТЫ ИСКУССТВЕННЫХ СПУТНИКОВ ЛУНЫ

Исследования химического состава лунного грунта были начаты с орбиты искусственных спутников Луны. Эти спутники позволили изучить характеристики окололунного пространства, магнитного и гравитационного полей Луны, а также, что особенно важно для нас, получить общие сведения геохимического характера. Естественно, что такие исследования являются глобальными, т. е. их результаты получаются усредненными по значительным площадям лунной поверхности.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Сергей Викторов читать все книги автора по порядку

Сергей Викторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Химия лунного грунта отзывы


Отзывы читателей о книге Химия лунного грунта, автор: Сергей Викторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img