Фридрих Гернек - Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга)
- Название:Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Фридрих Гернек - Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга) краткое содержание
Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Бесстрашие мышления, необходимое для разрешения новых физических проблем, метко охарактеризовал сам Гейзенберг: "На каждом существенно новом этапе познания нам всегда следует подражать Колумбу, который отважился оставить известный ему мир в почти безумной надежде найти землю за морем".
Когда Крамере, первый сотрудник Бора, принял приглашение занять должность профессора в Утрехтском университете, Гейзенберг изъявил готовность возвратиться в Копенгаген и стать в качестве преемника Крамерса доцентом теоретической физики Его лекции хорошо воспринимались студентами также и потому, что он в совершенстве владел датским языком. Во время этого второго пребывания в Копенгагене, в 1926...1927 годах, молодой немецкий физик неоднократно вел с Бором страстные споры о толковании квантовых явлений.
"Я вспоминаю, - писал позднее Гейзенберг, - о многочисленных дискуссиях с Бором, которые длились до поздней ночи и которые мы заканчивали почти в полном отчаянии. И если я после таких дискуссий один отправлялся на короткую прогулку в соседний парк, то повторял снова и снова вопрос о том, может ли природа действительно быть такой абсурдной, какой она кажется нам в этих атомных экспериментах".
Результаты этой работы мысли были сформулированы в 1927 году как "соотношение неопределенностей" Гейзенберга и "принцип дополнительности" Бора.
Нильс Бор был физиком до мозга костей. Он обладал, о чем говорил в одном из писем и Эйнштейн, гениальной интуицией в области физики, необычайной силы внутренним видением. Его почти сомнамбулическая уверенность при выявлении ключевых вопросов не имела себе равных. Вместе с тем во владении математическим аппаратом Бор во многом уступал своим коллегам. В разговоре с Паули он сделал однажды характерное признание, что его интерес к физике это интерес не математика, а, скорее, ремесленника и философа.
Действительно, математическое одеяние квантовой механики, основы которой, по сути, опираются на работы Бора, создано не им самим, а другими: Борном, Гейзенбергом, Иорданом, Паули, Дираком, Шрёдингером. Здесь сказалась известная ограниченность его огромного дарования. "Выдающиеся математические способности или даже виртуозность в той мере, в какой ими обладают многие из его учеников, ему не даны. Он мыслит наглядно и с помощью понятий, но не собственно математически". Так отозвался Карл Фридрих фон Вайцзеккер о творце современной теории атома. Он сообщал также, что среди учеников и сотрудников Бора ходила шутка о том, что учитель знает будто бы только два математических знака: "меньше, чем..." и "приблизительно равно".
Теоретико-познавательный вклад Бора в развитие атомной физики заключается в установлении двух принципов: соответствия и дополнительности. Их вызвала к жизни потребность ученого изобразить ясно, насколько это возможно, основы всех теоретико-познавательных выводов из атомной механики.
"Вначале он мог быть доволен, - писал Франк, - когда пришел к однозначному и непротиворечивому объяснению перехода от континуума к дискретному квантованию и, более того, принципиально связал индетерминизм элементарных процессов с методами, предполагающими возможность наблюдения. Иными словами, он должен был исследовать с теоретико-познавательных позиций сущность всякого наблюдения. Много лет посвятил Бор разработке этих проблем, пока, наконец, не пришел к удовлетворительным результатам. Они были изложены в написанной вместе с Розенфельдом работе, которая, насколько я могу ее оценить, представляет собой одну из самых прекрасных и самых глубоких работ по теории познания".
Принцип соответствия, который Бор выдвинул еще в 1916 году, означал, что квантовая теория может быть определенным образом согласована с классической теорией, то есть "соответствовать" ей. Классическая механика блестяще подтвердилась не только во всех макрофизических процессах, но также и во всех микрофизических процессах, вплоть до движения атомов как целого, что показала кинетическая теория материи. Итак, новая атомная механика должна была привести в конце концов к тем же результатам, что и классическая. Она должна была асимптотически перейти в классическую механику для крайних случаев больших масс или больших размеров орбит. Если значение элементарного кванта действия h рассматривать как бесконечно малую величину или пренебречь им, то практически будут действовать законы классической физики.
Если, например, электрон в атоме водорода переходит на орбиты, все дальше отстоящие от ядра, и наконец полностью отрывается от него, то законы излучения квантовой механики с большим приближением принимают форму законов классической электродинамики. Принцип соответствия передает, таким образом, связь между двумя противоречащими друг другу теоретическими построениями: микрофизикой и макрофизикой, границы между которыми определяются константой Планка.
Принцип соответствия, в котором старое было смело соединено с новым, оказался очень полезным для приблизительных расчетов интенсивности спектральных линий. Он сыграл большую роль в дальнейшем развитии квантовой физики. "Теоретическая физика жила этой идеей последующие десять лет, говорил Макс Борн. - ...Искусство угадывания правильных формул, которые отклоняются от классических, но переходят в них, в смысле принципа соответствия было значительно усовершенствовано".
Примерно десятилетие спустя, на съезде физиков, который был устроен летом 1927 года в Комо по случаю столетия со дня смерти великого итальянского физика Алессандро Вольта, Бор изложил свой второй принцип, принцип дополнительности, сделавший возможным непротиворечивое толкование явлений квантовой механики. Основные выводы появились под названием "Квантовый постулат и новое развитие атомистики" в журнале "Натурвиссеншафтен", а в первоначальном варианте на английском языке в журнале "Нейче".
Эта статья Бора, в которой впервые излагалось так называемое копенгагенское толкование квантовой механики, принадлежит к тем классическим документам физической науки, которые непосредственно послужили теоретической подготовке атомного века. Прошло более двух десятилетий, прежде чем выдвинутая Планком идея о квантах была настолько развита, что сделала возможным действительное понимание внутриатомных закономерностей.
С понятием корпускулы было связано представление о каком-то предмете, имеющем строго определенную величину движения и в данный момент находящемся в строго определенном месте, как это наблюдается в макромире, например у брошенного мяча, положение которого и скорость движения в любой момент могут быть точно измерены и определены.
Читать дальшеИнтервал:
Закладка: