Айзек Азимов - Взрывающиеся солнца. Тайны сверхновых
- Название:Взрывающиеся солнца. Тайны сверхновых
- Автор:
- Жанр:
- Издательство:Наука
- Год:1991
- Город:Москва
- ISBN:5-02-005985-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Взрывающиеся солнца. Тайны сверхновых краткое содержание
Книги известного писателя-фантаста и ученого Айзека Азимова известны во всем мире. Предлагаемое издание познакомит читателя с Азимовым — популяризатором науки. В этой книге рассказано о развитии знаний о космосе с древнейших времен до наших дней, об эволюции Вселенной, о рождении Солнечной системы, возникновении жизни на Земле. Все это рассматривается в тесной связи со сверхновыми. Возможно некоторые оценки и суждения американского писателя не совпадут с общепринятыми в нашей стране, тем не менее книга безусловно будет интересна.
Взрывающиеся солнца. Тайны сверхновых - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Каким же образом тройное столкновение может произойти в сердцевине звезды сейчас, а не в период непосредственно за Большим взрывом?
Что ж, в ядрах звезд, готовящихся выйти из главной последовательности, температура достигает приблизительно 100 000 000 °C при огромном давлении. Такие температуры и давления присущи и очень молодой Вселенной. Но у сердцевины звезды есть одно важное преимущество: тройному столкновению гелия-4 гораздо легче произойти, если в сердцевине звезды нет никаких других ядер, кроме ядер водорода-1, отгружающих ядра гелия-4.
Значит, тяжелые ядра образуются в недрах звезд на протяжении всей истории Вселенной, несмотря на то что такие ядра не были образованы непосредственно после Большого взрыва. Более того, и сегодня, и в будущем в сердцевинах звезд будут образовываться тяжелые ядра. И не только ядра углерода, но и все остальные массивные ядра, включая железо, которое, как было сказано, есть конец нормальных процессов синтеза в звездах.
И все же остаются два вопроса: 1) как тяжелые ядра, возникнув в центрах звезд, распространяются во Вселенной таким образом, что находятся и на Земле, и в нас самих? 2) как ухитряются сформироваться элементы с более массивными ядрами, чем ядра железа? Ведь самое массивное устойчивое ядро железа — это железо-58, состоящее из 26 протонов и 32 нейтронов. И все же на Земле есть еще более тяжелые ядра, вплоть до урана-238, имеющего 92 протона и 146 нейтронов.
Давайте сначала рассмотрим первый вопрос. Существуют ли процессы, способствующие распространению звездного материала во Вселенной?
Существуют. И некоторые из них мы можем ясно почувствовать, изучая наше собственное Солнце.
Невооруженному глазу (с необходимыми предосторожностями) Солнце может показаться спокойным, лишенным особых примет ярким шаром, но мы знаем, что оно находится в состоянии вечного шторма. Огромные температуры в его недрах вызывают конвективные движения в верхних слоях (как в котелке с водой, который собирается закипеть). Солнечное вещество непрерывно то здесь, то там поднимается, взламывая поверхность, поэтому поверхность Солнца покрыта «гранулами», являющимися для него конвективными столбами. (Такая гранула выглядит на фотографиях солнечной поверхности совсем маленькой, на самом же деле она имеет площадь приличного американского или европейского государства.)
Конвективный материал по мере своего подъема расширяется и остывает и, оказавшись на поверхности, стремится снова уйти вниз, чтобы дать место новому, более горячему потоку.
Этот вечный круговорот не останавливается ни на мгновение, он помогает переносу тепла от ядра к поверхности Солнца. С поверхности энергия высвобождается в пространство в виде излучения, большая часть его — свет, который мы видим и от которого зависит сама жизнь на Земле.
Процесс конвекции иногда может привести к чрезвычайным событиям на поверхности светила, когда в пространство не только уходит излучение, но и выбрасываются целые груды настоящего солнечного вещества.
В 1842 г. в Южной Франции и в Северной Италии наблюдали полное затмение Солнца. Тогда затмения редко изучались подробно, так как они обычно проходили в районах, удаленных от крупных астрономических обсерваторий, а проделывать большие расстояния с полным грузом специального оборудования было совсем не просто. Но затмение 1842 г. прошло вблизи астрономических центров Западной Европы, и астрономы со своими инструментами все собрались туда.
Впервые было замечено, что вокруг солнечного обода существуют какие-то раскаленные, багрового цвета, объекты, которые стали отчетливо видны, когда диск Солнца был закрыт Луной. Это походило на струи солнечного материала, выстреливаемого в пространство, и огненные языки эти получили название «протуберанцы».
Какое-то время астрономы еще колебались относительно того, чему принадлежат эти протуберанцы — Луне или Солнцу, но в 1851 г. произошло еще одно затмение, на этот раз наблюдаемое в Швеции, и тщательное наблюдение показало, что протуберанцы — это явление, солнечное, а Луна к ним не имеет никакого отношения.
С тех пор протуберанцы стали изучаться регулярно, и теперь их можно наблюдать с помощью соответствующих инструментов в любое время. Для этого не нужно ждать полного затмения. Некоторые протуберанцы вздымаются мощной дугой и достигают высоты десятков тысяч километров над поверхностью Солнца. Другие взрывоподобно взлетают вверх со скоростью 1300 км/с. Хотя протуберанцы — это наиболее эффектное явление, наблюдаемое на поверхности Солнца, они все же не несут в себе наибольшей энергии.
В 1859 г. английский астроном Ричард Кэррингтон (1826–1875) заметил звездообразную точку света, вспыхнувшую на солнечной поверхности, которая горела в течение пяти минут и затем пропала. Это было первое зафиксированное наблюдение того, что мы теперь называем солнечной вспышкой. Сам же Кэррингтон думал, что на Солнце упал крупный метеорит.
Наблюдение Кэррингтона не привлекло к себе внимания, пока американский астроном Джордж Хэйл не изобрел в 1926 г. спектрогелиоскоп. Это дало возможность наблюдать Солнце в свете особых длин волн. Солнечные вспышки заметно богаты некоторыми длинами световых волн, и, когда Солнце рассматривают в волнах этой длины, вспышки видны очень ярко.
Теперь мы знаем, что солнечные вспышки — дело обычное, они связаны с солнечными пятнами, и, когда на Солнце много пятен, маленькие вспышки бывают через каждые несколько часов, а более крупные — через несколько недель.
Солнечные вспышки — это взрывы высокой энергии на солнечной поверхности, и те участки поверхности, которые вспыхивают, гораздо горячее, чем окружающие их другие участки. Вспышка, охватывающая хотя бы тысячную часть поверхности Солнца, может послать больше радиации высокой энергии (ультрафиолетового излучения, рентгеновских и даже гамма-лучей), чем послала бы вся обычная поверхность Солнца.
Хотя протуберанцы выглядят очень внушительно и могут существовать несколько дней, Солнце теряет через них очень мало материи. Совсем другое дело вспышки. Они менее заметны, многие из них длятся какие-то минуты, даже крупнейшие из них полностью исчезают через пару часов, однако они обладают такой высокой энергией, что выстреливают материю в космос; эта материя навсегда потеряна для Солнца.
Это начали понимать в 1843 г., когда немецкий астроном Самуил Генрих Швабе (1789–1875), ежедневно наблюдавший за Солнцем в течение семнадцати лет, сообщил, что число солнечных пятен на его поверхности увеличивается и уменьшается за период примерно в одиннадцать лет.
В 1852 г. английский физик Эдвард Сабин (1788–1883) заметил, что возмущения магнитного поля Земли («магнитные бури») возникают и ослабевают одновременно с циклом солнечных пятен.
Читать дальшеИнтервал:
Закладка: