Фред Адамс - Пять возрастов Вселенной
- Название:Пять возрастов Вселенной
- Автор:
- Жанр:
- Издательство:Институт компьютерных исследований; R&C Dynamics
- Год:2006
- Город:Ижевск
- ISBN:5-93972-500-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Фред Адамс - Пять возрастов Вселенной краткое содержание
В конце двадцатого века Фред Адамс и Грег Лафлин завладели вниманием всего мира, выделив пять временных эпох. Этих авторов считают создателями долгосрочного проекта эволюции Вселенной. Масштабы их творения, охватившего полную историю космоса от его рождения до гибели, и глубина рассмотренных научных вопросов внушают благоговейный трепет. Однако «Пять возрастов Вселенной» — не просто справочник, описывающий физические процессы, которые руководили нашим прошлым и будут формировать наше будущее, это истинная эпопея. С ее помощью можно совершить фантастическое путешествие в физику вечности, не покидая Земли. Это единственная биография Вселенной, которая вам когда-либо понадобится.
Книга предназначена для широкого круга читателей.
Пять возрастов Вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В контексте современной космологии температура Вселенной постоянно изменяется, в силу чего существенно варьируется и ответ на вопрос о тепловой смерти. Непрерывно расширяющаяся Вселенная никогда не достигает истинного термодинамического равновесия, т. к. она никогда не приобретает постоянной температуры. Из-за расширения фоновая температура Вселенной продолжает падать. Таким образом, Вселенная явно избегает классической тепловой смерти. Однако расширяющаяся Вселенная, в принципе, может стать чисто адиабатической, а это означает, что энтропия данной области Вселенной остается постоянной. В этом случае Вселенная все равно имеет все шансы стать скучным и мертвым местом, лишенным всяческой способности к выполнению физической работы. Последнюю возможность мы называем космологической тепловой смертью : это фактическая тепловая смерть Вселенной, даже несмотря на то, что ее температура не постоянна. Как мы отмечаем на протяжении всей этой книги, интересные космологические процессы продолжают вырабатывать энергию и энтропию в нашей Вселенной, по крайней мере, до сотой космологической декады. Так что космологическая тепловая смерть откладывается до того времени, когда Вселенная вступает в эпоху вечной тьмы.
Механизмы образования энергии и энтропии, доступные Вселенной, зависят от вида долгосрочной эволюции. В случае замкнутой Вселенной она, в конечном итоге, пережила бы повторный коллапс и закончила свой жизненный путь в Большом сжатии, поэтому вопрос о долгосрочном образовании энтропии даже бы не возник. Интересные физические процессы продолжались бы во Вселенной до самого последнего мгновения Большого сжатия. Некоторая доля иронии присутствует в терминологии этого повествования: замкнутая Вселенная может избежать оскорбительной тепловой смерти даже тогда, когда ее сложные структуры испаряются под действием сильного лучистого тепла, образующегося в результате катастрофического коллапса.
В случае плоской Вселенной, которая замедляется, продолжая расширяться, на космологическом горизонте появляются и становятся связанными действием гравитации космические структуры постоянно увеличивающегося размера и массы. Поскольку расширение Вселенной замедляется, гравитация, по мере старения Вселенной, получает шанс стягивать материал все с больших и больших расстояний. В плоской Вселенной космические структуры гигантских размеров могут образовываться даже в эпоху вечной тьмы. Конечно же, эпоха вечной тьмы не обязательно абсолютно темна. Некоторые из этих огромных космических структур, в принципе, могут коллапсировать, образуя черные дыры, а следовательно, предыдущая эпоха черных дыр в действительности может вообще не закончиться. Может случиться и так, хотя гарантировать этого мы не можем, что черные дыры будут образовываться быстрее, чем испаряться. В этом случае Вселенная могла бы продолжить поддерживать различные процессы, используя энергию, образующуюся в результате испарения Хокинга этих чудовищных черных дыр. Таким образом, Вселенная, по крайне мере в принципе, может избежать космологической тепловой смерти, пока остается почти плоской. В этом случае война между гравитацией и термодинамикой переходит в патовую ситуацию. Гравитация непрерывно создает все более крупные гравитационно связанные структуры — черные дыры — и одерживает временную победу. Однако каждой отдельной структуре суждено испариться, что приведет к окончательной победе термодинамики и производству энтропии.
С другой стороны, если Вселенная открыта, скорость ее расширения достигает постоянного значения, и гравитация явно проигрывает свое сражение с этим расширением: она уже не может конкурировать с ним. Образование космических структур прекращается на каком-то определенном масштабе, а для продолжения образования черных дыр или любых космических структур возникают серьезные препятствия. Для этого случая вопросы долгосрочного производства энтропии и космологической тепловой смерти Вселенной по-прежнему открыты. И хотя эти перспективы могут показаться довольно унылыми, во Вселенной по-прежнему остается много захватывающих новых возможностей.
Жизнь и смерть позитрония
Вероятно, самым оживленным действом в эпоху вечной тьмы будут процессы с участием атомов позитрония. В отсутствие протонов и нейтронов обычные атомы невозможны. С другой стороны, в относительно больших количествах будут существовать позитроны — положительно заряженные антиматериальные партнеры электронов. Электроны и позитроны могут объединиться в атомные структуры, аналогичные традиционным атомам водорода, состоящим из одного протона и одного электрона. Атом, образованный позитроном и электроном, называется позитронием.
Атомные свойства позитрония заметно отличаются от свойств традиционных атомов в двух отношениях. Поскольку масса позитрона в две тысячи раз меньше массы протона, изменяются орбиты электронов. Таким образом, химия позитрония весьма отличается от химии водорода. Однако гораздо важнее то, что позитрон и электрон могут аннигилировать друг с другом, на что не способны протон и электрон в обычном водородном атоме. Так что судьба атомов позитрония решается в момент их образования. При наличии достаточного времени электрон и позитрон должны аннигилировать друг с другом, образуя крошечный выброс излучения.
Синтез атомов позитрония в земных лабораториях — дело довольно обычное. Обычно эти атомы создаются в низкоэнергетических состояниях и имеют микроскопические размеры, примерно сравнимые с размером обычных атомов. Эти микроскопические атомы позитрония живут лишь крошечную долю секунды, по истечении которой исчезают из Вселенной в результате аннигиляции. Это короткое время жизни, крайне неудовлетворительное для нас, обусловлено крошечным размером, с которым рождаются эти атомы.
К счастью, в очень поздней Вселенной фоновая плотность сильно размыта и образующиеся атомы позитрония имеют орбиты невероятно больших радиусов. Типичный размер позитрония, образованного в эпоху вечной тьмы, составляет триллионы световых лет — больше, чем вся видимая сегодня Вселенная. Предполагается, что образование позитрония этого типа начнется где-то около семьдесят первой космологической декады. Эти огромные атомы рождаются в состояниях относительно высоких энергий по сравнению с микроскопическими атомами позитрония, которые так быстро распадаются. Электрон и позитрон медленно вращаются вокруг друг друга и постепенно отдают чрезвычайно маленькие количества излучения при постоянном уменьшении их орбит. Эти частицы кружатся в экзотическом танце, который в конечном итоге приводит к полному разрушению его участников и абсолютному краху накопленной ими энергии. Атомы позитрония с такими огромными начальными размерами распадаются по истечении довольно долгого промежутка времени — около ста сорока пяти космологических декад. Таким образом, будущая Вселенная содержит окно времени, в течение которого позитроний может образоваться и существовать, до того как произойдет его неизбежное саморазрушение. Середина этого окна приходится примерно на сотую космологическую декаду — время, когда, напоследок вспыхнув, Вселенную покидают черные дыры с галактическими массами.
Читать дальшеИнтервал:
Закладка: