Стивен Вайнберг - Первые три минуты
- Название:Первые три минуты
- Автор:
- Жанр:
- Издательство:НИЦ Регулярная и хаотическая динамика
- Год:2000
- Город:Ижевск
- ISBN:5-93972-013-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Вайнберг - Первые три минуты краткое содержание
В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».
В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.
Для читателей, интересующихся проблемами космологии.
Первые три минуты - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Измерения подобного рода чрезвычайно трудны. Радиоволны от нашей Галактики, как и от большинства астрономических источников, лучше всего могут быть описаны как некий сорт шума, очень похожий на «статические разряды», которые можно слышать по радиоприемнику во время грозы. Такой радиошум нелегко отличить от неизбежного электрического шума, производимого случайными движениями электронов внутри радиоантенного устройства и в усилительных цепях, или от радиошума, принимаемого антенной от земной атмосферы. Трудности не столь велики, если изучается относительно «маленький» источник радиошума вроде звезды или далекой галактики. В этом случае можно переключать луч антенны туда-сюда между источником и соседним участком пустого неба; любой ложный шум, идущий от антенного устройства, усилительных цепей или земной атмосферы, будет примерно одинаков независимо от того, направлена антенна на источник или на соседний участок неба, поэтому при сравнении показаний этот шум сократится. Однако Пензиас и Вилсон собирались измерить радиошум, идущий от нашей собственной Галактики, т. е. по существу, от самого неба. Поэтому было крайне важно определить любой электрический шум, который мог бы возникать внутри их приемной системы.
При предварительных испытаниях этой системы был обнаружен, на самом деле, несколько больший шум, чем ожидалось по расчетам, но казалось правдоподобным, что это разногласие связано с небольшим избытком шума в усилительных цепях. Чтобы избавиться от этих проблем, Пензиас и Вилсон использовали устройство, известное как «холодная нагрузка», — мощность, приходящая от антенны, сравнивается с мощностью, создаваемой искусственным источником, охлажденным жидким гелием при температуре около четырех градусов выше абсолютного нуля. Электрический шум в усилительных цепях должен быть одинаков в обоих случаях и поэтому уничтожается при сравнении, что позволяет непосредственно измерить мощность, идущую от антенны. Измеренная таким способом мощность сигнала от антенны будет содержать вклады только от антенного устройства, земной атмосферы и любого астрономического источника радиоволн.

Радиотелескоп в Холмделе.
Арно Пензиас (справа) и Роберт В. Вилсон сняты рядом с 20-футовой рупорной антенной, с помощью которой в 1964–1965 годах они обнаружили трехградусный фон космического микроволнового излучения. Этот телескоп находится в Холмделе, Нью-Джерси, месте, где расположены лаборатории фирмы «Белл Телефон» (фотография лаборатории «Белл Телефон»).
Пензиас и Вилсон ожидали, что антенное устройство будет давать очень небольшой электрический шум. Однако, чтобы проверить это предположение, они начали свои наблюдения на сравнительно коротких волнах — длиной 7,35 см, на которых радиошум от нашей Галактики должен был быть пренебрежимо мал. Естественно, какой-то радиошум ожидался на такой длине волны и от земной атмосферы, но этот шум должен иметь характерную зависимость от направления: он должен быть пропорционален толщине атмосферы в направлении, куда смотрит антенна, — немного меньше в направлении зенита, чуть больше в направлении горизонта. Ожидалось, что после вычитания атмосферного члена с характерной зависимостью от направления не останется никакого существенного сигнала от антенны, и это подтвердит, что электрический шум, производимый антенным устройством, на самом деле пренебрежимо мал. После этого можно будет начать изучение самой Галактики на больших длинах волн — около 21 см, где ожидалось, что радиошум будет иметь приемлемое значение. (Кстати говоря, радиоволны с длинами вроде 7,35 см или 21 см и вплоть до 1 м известны как микроволновое излучение. Такое название дано потому, что эти длины волн меньше, чем у тех ультракоротких волн, которые использовали в радарах в начале второй мировой войны.)
К своему удивлению, Пензиас и Вилсон обнаружили весной 1964 года, что они принимают на длине волны 7,35 см довольно заметное количество микроволнового шума, не зависящего от направления. Они нашли, что этот «статический фон» не меняется в зависимости от времени суток, а позднее обнаружили, что он не зависит от времени года. Создавалось впечатление, что он не может идти от нашей Галактики; если бы это было так, то большая галактика М 31 в Андромеде, во многих отношениях похожая на нашу, по-видимому, должна была бы также сильно излучать на волне 7,35 см, и этот микроволновой шум должен был бы уже наблюдаться. Кроме того, отсутствие каких-либо вариаций наблюдаемого микроволнового шума с направлением весьма серьезно указывало на то, что эти радиоволны, если они действительно существуют, приходят не от Млечного Пути, а от значительно большего объема Вселенной.
Ясно, что было необходимо снова проверить, не могла ли сама антенна производить больше электрического шума, чем ожидалось. В частности, было известно, что пара голубей угнездилась в рупоре антенны. Голуби были пойманы, отправлены по почте на принадлежащий лабораториям компании Белл участок в Виппани, выпущены на волю, вновь обнаружены несколькими днями спустя в антенне в Холмделе, снова пойманы и, наконец, утихомирены более решительными средствами. Однако во время аренды помещения голуби покрыли внутренность антенны тем, что Пензиас деликатно назвал «белым диэлектрическим веществом», и это вещество могло при комнатной температуре быть источником электрического шума. В начале 1965 года стало возможным демонтировать рупор антенны и вычистить всю грязь, но это, как и все другие попытки, дало очень малое уменьшение наблюдаемого уровня шума. Загадка оставалась: откуда приходил этот микроволновой шум?
Одна часть числовых данных, имевшихся в распоряжении Пензиаса и Вилсона, относилась к интенсивности наблюдавшегося радиошума. Для описания этой интенсивности они использовали язык радиоинженеров, который неожиданно оказался весьма уместным в данном случае. Любое тело при любой температуре выше абсолютного нуля всегда испускает радиошум, производимый тепловым движением электронов внутри тела. Внутри ящика с непрозрачными стенками интенсивность радиошума на любой заданной длине волны зависит только от температуры стенок: чем выше температура, тем интенсивнее фон. Поэтому интенсивность радиошума, наблюдаемого на определенной длине волны, можно описывать в терминах «эквивалентной температуры», т. е. температуры стенок ящика, внутри которого радиошум будет иметь наблюдаемую интенсивность. Конечно, радиотелескоп — не термометр; он измеряет интенсивность радиоволн, регистрируя слабенькие электрические токи, которые индуцируются волнами в антенном устройстве. Когда радиоастрономы говорят, что они наблюдают радиошум с такой-то и такой-то эквивалентной температурой, они подразумевают лишь то, что это есть температура непрозрачного ящика, внутри которого следует поместить антенну для того, чтобы получить наблюдаемую интенсивность радиошума. Находится ли антенна в таком ящике на самом деле или нет, это, конечно, другой вопрос.
Читать дальшеИнтервал:
Закладка: