Стивен Вайнберг - Первые три минуты

Тут можно читать онлайн Стивен Вайнберг - Первые три минуты - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство НИЦ Регулярная и хаотическая динамика, год 2000. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Стивен Вайнберг - Первые три минуты краткое содержание

Первые три минуты - описание и краткое содержание, автор Стивен Вайнберг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».

В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.

Для читателей, интересующихся проблемами космологии.

Первые три минуты - читать онлайн бесплатно ознакомительный отрывок

Первые три минуты - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Вайнберг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

При высокой температуре (выше пороговой температуры для рождения Х -частиц) частицы X находятся в равновесии. Однако при расширении и охлаждении распад Х -частиц отстает и на определенной стадии X + и Х - распадаются в неравновесных условиях. При этом из-за асимметрии частиц и античастиц образуется несколько больше кварков по сравнению с количеством антикварков. При дальнейшем охлаждении кварки и антикварки соединяются в барионы, антибарионы и мезоны, и возникает избыток барионов.

С другой стороны, распад протонов в настоящее время происходит через промежуточное образование частицы X :

Первый шаг процесса есть обращение того процесса X 2q который написан - фото 109

Первый шаг процесса есть обращение того процесса ( X → 2q ), который написан выше. Так как X — очень тяжелая частица, то образоваться она может лишь на краткое мгновение (как говорят физики — «виртуально»), наблюдать можно лишь конечные продукты распада

Вероятность процесса мала именно потому что велика масса X образующая - фото 110

Вероятность процесса мала именно потому, что велика масса X , образующая энергетический барьер на пути реакции. В ближайшие 20–30 лет прямое наблюдение Х -частицы исключено, однако мы надеемся, что распад протона будет наблюден значительно раньше.

ДОПОЛНЕНИЕ 7. О КОНЦЕНТРАЦИИ И ПЛОТНОСТИ

НЕЙТРИНО ВО ВСЕЛЕННОЙ

При высокой температуре, выше 10 10К, нейтрино находятся в термодинамическом равновесии с электронами, позитронами и фотонами. Равновесная концентрация нейтрино убывает с понижением температуры пропорционально кубу температуры. Этот закон убывания такой же, как и у фотонов, так как нейтрино либо вовсе не имеют массы покоя, как фотоны, либо масса их мала по сравнению с энергией при высокой температуре. Поэтому соотношение между числом нейтрино и фотонов в этот период не зависит от силы взаимодействия и, таким образом, неверно, что нейтрино сохраняются вследствие того, что они слабо взаимодействуют и сечение их аннигиляции мало. Если бы нейтрино взаимодействовали сильнее (что в действительности имеет место при температуре выше 10 10К), то аннигиляция нейтрино и антинейтрино с превращением их, например, в фотоны происходила бы чаще. Однако одновременно усилился бы и обратный процесс превращения фотонов в пары нейтрино и антинейтрино. Концентрация нейтрино в термодинамическом равновесии, приблизительно равная концентрации фотонов, при этом не изменилась бы. Имея в виду, что позже, после аннигиляции электронов и позитронов, температура нейтрино на самом деле будет даже несколько ниже температуры излучения, усиление взаимодействия привело бы даже к некоторому увеличению концентрации нейтрино за счет уменьшения концентрации фотонов. Сказанное выше относится к нейтрино, относительно которых предполагается, что масса покоя равна нулю, скорость равна скорости света и энергия равна импульсу, умноженному на скорость света. Термодинамические свойства таких безмассовых нейтрино мало отличаются от свойств фотонов.

Современная теория не исключает возможного существования тяжелых нейтрино с отличной от нуля массой покоя. Надо сказать, что из лабораторных опытов определить массы нейтрино удается с трудом и неточно. До недавнего времени, до 1980 года, известны были лишь верхние пределы массы нейтрино различного типа. Лабораторные опыты по распаду трития давали для массы покоя электронного нейтрино верхний предел mс 2 < 60 или 40 эВ, т. е. m < 10 -4 m е ~ 10 -31г. Для мюонных нейтрино можно утверждать только, что их масса покоя меньше 2 миллионов электронвольт, т. е. меньше учетверенной массы электрона. Недавно (Перл, 1975 год) открыта заряженная тау-частица, тяжелый аналог электрона и мюона. Масса тау-частицы около 1800 миллионов электрон-вольт, т. е. она почти вдвое тяжелее протона. Естественно полагать, что при распаде этой заряженной частицы образуются соответствующие ей тау-нейтрино. Лабораторные опыты не исключают того, что масса покоя тау-нейтрино отлична от нуля, и дают только, что эта масса меньше 500 миллионов электронвольт.

С.С. Герштейн и Я.Б. Зельдович (1966 год) показали, что космологические соображения ограничивают массу покоя электронного и мюонного нейтрино значением меньше 100–200 эВ. Последующие авторы уточняли эти соображения и утверждали, что масса нейтрино меньше 10 эВ. К тем же выводам для тау-нейтрино пришли независимо Бенжамен Ли и Вайнберг в США и М.И. Высоцкий, А.Д. Долгов и Я.Б. Зельдович в СССР.

В последнее время в Москве, в Институте теоретической и экспериментальной физики В.А. Любимов, Е.Г. Новиков, В.З. Нозик, Е.Ф. Третьяков и В.С. Козик провели новое более точное исследование распада трития и пришли к выводу, что электронное нейтрино с большой вероятностью имеет массу покоя в пределах между 15 и 45 эВ. За рубежом появились указания на так называемые нейтринные осцилляции, т. е. на взаимные превращения электронных нейтрино в мюонные и тау-нейтрино во время пролета нейтрино от источника (ядерного реактора или ускорителя) до мишени, т. е. детектора. Такие осцилляции интересны для астрономии сами по себе, так как они объясняют дефицит солнечных нейтрино в соответствии с идеей, давно высказанной Б.М. Понтекорво. Но эти осцилляции важны еще и потому, что они были бы невозможны, если бы все нейтрино имели нулевую массу покоя.

Наличие у нейтрино небольшой массы покоя, скажем, между 5 и 50 эВ, имеет огромное значение для космологии. Процессы при высокой температуре, в течение тех «первых минут», которым посвящена книга Вайнберга, практически не изменяются, поскольку энергия покоя нейтрино мала по сравнению с температурой (см. выше в этом дополнении). Однако еще до рекомбинации водорода (происходящей при температуре 3000 К = 0,3 эВ) тепловая энергия становится меньше массы покоя нейтрино. В термодинамическом равновесии нейтрино и антинейтрино должны были бы аннигилировать, превращаясь в фотоны. Однако вероятность такого процесса при температуре ниже 10 10К ничтожна, аннигиляция нейтрино практически не имеет места.

К сегодняшнему дню Вселенная пришла с неизменным соотношением между концентрацией фотонов (~400 штук в 1 см 3) и концентрацией нейтрино (около 360 штук нейтрино и антинейтрино всех трех сортов в 1 см 3).

Средняя энергия одного фотона при температуре 2,7 или З К около 0,001 эВ, что соответствует массе 2 × 10 -36г; плотность фотонного газа составляет при этом около 10 -33г/см 3.

Плотность же нейтринного газа при средней массе покоя 10 эВ для нейтрино всех видов равна 10 -29г/см 3. Это в 10 000 раз больше плотности излучения! Плотность излучения в настоящее время мала по сравнению с плотностью обычного вещества, т. е. барионов (~ 10 -30— 10 -31г/см 3), и мала по сравнению с критической плотностью (5 × 10 -30— 10 -29г/см 3). Но плотность нейтрино, если они обладают массой покоя порядка 10 эВ, оказывается очень большой! Возникает принципиально новая картина Вселенной, в которой главную часть плотности составляет плотность нейтрино.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Вайнберг читать все книги автора по порядку

Стивен Вайнберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Первые три минуты отзывы


Отзывы читателей о книге Первые три минуты, автор: Стивен Вайнберг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x