Стивен Вайнберг - Первые три минуты
- Название:Первые три минуты
- Автор:
- Жанр:
- Издательство:НИЦ Регулярная и хаотическая динамика
- Год:2000
- Город:Ижевск
- ISBN:5-93972-013-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Вайнберг - Первые три минуты краткое содержание
В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».
В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.
Для читателей, интересующихся проблемами космологии.
Первые три минуты - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
ЛИТЕРАТУРА, РЕКОМЕНДУЕМАЯ РЕДАКТОРОМ ПЕРЕВОДА
Фридман А.А. Избранные труды . М., Наука, 1966.
Читатель может познакомиться в этой книге с работами Фридмана, заложившими основу современной космологии, а также с написанной для широкой публики книгой «Мир как пространство и время», впервые изданной в 1923 году.
Зельдович Я.Б. Горячая Вселенная . — Успехи физ. наук, 1975, т. 115, с. 169.
Обзор теории горячей Вселенной, в котором освещено состояние вопроса на 1975 год.
Зельдович Я.Б., Новиков И.Д. Строение и эволюция Вселенной . М., Наука, 1975.
Фундаментальная работа, посвященная подробному изложению классических основ и новейших проблем космологии. Содержит обширный список литературы по космологии.
Сопоставление теории и наблюдений в космологии . Материалы симпозиума 1973 г. в Кракове. М., Мир, 1978.
Содержатся последние данные о связи теории и наблюдений в космологии.
Энциклопедия космоса . М., Сов. энциклопедия, 1976.
Среди прочего содержит ясно и доступно написанные статьи по космологии.
Долгов А.Д., Зельдович Я.Б. Космология и элементарные частицы . — Успехи физ. наук, 1980, т. 130, вып. 4, с. 559.
Зельдович Я.Б. Теория вакуума, быть может, решает загадку космологии . — Успехи физ. наук, 1981, т. 133, вып. 3, с. 479.
Окунь Л.Б. Лептоны и кварки . М., Наука, 1981.
Прекрасное изложение современной теории частиц и полей для подготовленного читателя.
Крупномасштабная структура Вселенной . Материалы симпозиума 1977 г. в Таллине. М., Мир, 1981.
Приложение
ИДЕЙНЫЕ ОСНОВЫ ЕДИНОЙ ТЕОРИИ СЛАБЫХ
И ЭЛЕКТРОМАГНИТНЫХ ВЗАИМОДЕЙСТВИЙ [66] Weinberg Steven. Conceptual Foundation of the Unified Theory of Weak and Electromagnetic Interactions: Nobel Lecture. December 8, 1979. — Перевод И.М.Дремина.
Нобелевская лекция по физике, 8 декабря 1979 года
Задача физика — выработать простой взгляд на явления природы, объяснить огромное количество сложных процессов с единой точки зрения на основе нескольких простых принципов. Временами наши усилия вознаграждаются результатами прекрасных экспериментов такими, например, как открытие нейтральных токов в нейтринных реакциях. Но даже в «смутное время» между блестящими «прорывами» на экспериментальном фронте идет непрерывная эволюция теоретических идей, которая постоянно меняет сложившиеся ранее представления. В этой лекции я хочу обсудить развитие двух направлений исследований в теоретической физике. Одно из них связано с медленным прогрессом в нашем понимании симметрии и, в частности, нарушенной, или скрытой, симметрии. Другое определяется давней борьбой с бесконечностями в квантовых теориях поля. Кратко я опишу и то, как сближение этих направлений исследований привело к моему участию в работе по объединению слабых и электромагнитных взаимодействий. В основной своей части моя лекция будет посвящена моему постепенному образованию в этих направлениях, потому что именно об этом я могу говорить с достаточной уверенностью. Я также попытаюсь заглянуть вперед и показать ту роль, которую могла бы сыграть в физике будущего разработка этих идей, хотя здесь моя уверенность заметно поубавится.
В физике XX века принципы симметрии появились в 1905 г., вместе с эйнштейновским пониманием группы инвариантности пространства-времени. После этого прецедента симметрии заняли в умах физиков место априорных принципов, с универсальной справедливостью выражающих простоту природы на самом ее глубоком уровне. Именно поэтому в 30-х годах оказалось до боли трудным воспринять наличие внутренних симметрий, таких, как сохранение изоспина [1], которые не имели никакого отношения к обычному пространству и времени. Эти симметрии отнюдь не были самоочевидны и при этом оказались связанными только с тем, что сейчас называется сильными взаимодействиями. В 50-е годы мы стали свидетелями открытия другой внутренней симметрии — сохранения странности [2], которой не подчиняются слабые взаимодействия. Было обнаружено, что даже одна из, вероятно, наиболее сокровенных симметрий пространства-времени, — четность, — нарушается при слабых взаимодействиях [3]. Вместо движения к единству физикам пришлось учиться тому, что разные взаимодействия, очевидно, управляются совершенно различными симметриями. Состояние дел стало еще более удручающим в начале 60-х годов с признанием роли новой группы симметрии — «восьмеричного пути», которая не является точной симметрией даже в сильных взаимодействиях [4].
Все это — «глобальные» симметрии, в которых преобразования симметрии не зависят от положения в пространстве и времени. Вместе с тем еще в 20-е годы было понято [5], что квантовая электродинамика обладает другой, намного более мощной симметрией — «локальной» симметрией относительно преобразований, при которых поле электрона приобретает некоторую добавку к фазе, меняющуюся свободно от точки к точке в пространстве и времени, а векторный потенциал электромагнитного поля претерпевает соответствующее калибровочное преобразование. Сейчас это назвали бы калибровочной симметрией U(1), потому что простое изменение фазы можно рассматривать как умножение на унитарную матрицу 1 × 1. Расширение на более сложные группы было проведено Янгом и Миллсом [6] в 1954 г. в известной статье, где они показали, как можно построить SU(2) — калибровочную теорию сильных взаимодействий. (Название «SU(2)» означает, что группа преобразований симметрии задается унитарными матрицами 2 × 2, которые являются «специальными», поскольку их детерминанты равняются единице.) Но и здесь опять казалось, что если эта симметрия вообще имеет отношение к действительности, то она должна быть лишь приближенной, поскольку калибровочная инвариантность требует (по крайней мере, на наивном уровне), чтобы векторные бозоны, подобно фотону, были безмассовыми, а представлялось очевидным, что переносчиками сильных взаимодействий должны быть массивные частицы. Оставалась нерешенной и старая проблема: если принципы симметрии служат проявлением простоты природы на ее глубочайшем уровне, то каким образом может возникать такое понятие, как приближенная симметрия? Неужели природа только приближенно проста?
Как-то в 1960 г. или в начале 1961 г. я познакомился с идеей, которая вначале появилась в физике твердого тела, а затем была привнесена в физику частиц теми, кто подобно Гейзенбергу, Намбу и Голдстоуну работал в обеих областях физики. Это была идея о «нарушенной симметрии», заключавшаяся в том, что гамильтониан и коммутационные соотношения квантовой теории могут обладать точной симметрией и тем не менее физические состояния могут не отвечать представлениям этой симметрии. В частности, может оказаться, что симметрия гамильтониана не является симметрией вакуума.
Читать дальшеИнтервал:
Закладка: