Э Розенталь - Геометрия, динамика, вселенная
- Название:Геометрия, динамика, вселенная
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Э Розенталь - Геометрия, динамика, вселенная краткое содержание
Геометрия, динамика, вселенная - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
заряд в замкнутой системе сохраняется,
силы в статическом случае дальнодействующие,
масса частицы переносчика взаимодействия m|||||=0 .
GAMMA
Последнее свойство является важной особенностью калибровочной инвариантности, а также и всех остальных ее следствий. Дело в том, что частицы с нулевой массой обладают особым свойством: у таких частиц существует всего два направления поляризации в отличие от частиц с массой m /= 0 , у которых имеются три три направления поляризации. Это особое свойство безмассовых частиц и есть первопричина калибровочной инвариантности.`
-----------------------------------------------------------` Наиболее просто взаимосвязь условия m||||| = 0 и
GAMMA калибровочной инвариантности показана в ст.: Вайнберг С. Свет как фундаментальная частица//УФН. 1976. Т.120. С.677. Подробнее о калибровочной инвариантности см. в кн.: Коноплева Н.П. Попов В.Н. Калибровочные поля. М.: Атомиздат. 1980; Окунь Л.Б. Физика элементарных частиц. М.: Наука, 1984. -----------------------------------------------------------
8. ГЕОМЕТРИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ
СОСТОЯНИЙ
Рассмотрим пример: систему невзаимодействующих частиц, движущихся по классическим траекториям. Каждой частице в момент времени t соответствуют свои координаты и проекции импульса. Таким образом, каждой точке видимого пространства соответствует значение вектора импульса. Можно рассматривать движение системы частиц в этом пространстве, не придавая совокупности импульсов никакого геометрического смысла. Кроме того, можно полагать, что вся совокупность координат играет роль базы, а векторы импульсов - слоев. При отсутствии взаимодействия подобное расслоенное пространство тривиально, а использование в данном случае образа расслоенного пространства и его несколько непривычных для физиков понятий - ненужное усложнение. Разумнее рассматривать изолированно два пространства: конфигурационное (координаты) и импульсное.
Однако ситуация меняется, если пытаться интерпретировать внутренние квантовые числа элементарных частиц. Здесь мы остановимся на геометрической интерпретации спина, изотопического спина и цвета (об этих квантовых числах см. Дополнение).
Введем вектор, характеризующий состояние системы, которую для определенности мы будем отождествлять с частицей. В первом приближении под состоянием следует понимать значения ее координат и вектора импульса.
Однако если пытаться включить в понятие состояния значения внутренних квантовых чисел, то элементарная (привычная) наглядность состояния частицы утрачивается. Если понятие спина частицы можно отождествить с вращением вектора состояния в обычном конфигуральном пространстве (например, пространстве Минковского), то уже при попытке наглядно геометрически интерпретировать изотопический спин возникают определенные трудности. Формализмы обычного и изотопического спинов тождественны. Они соответствуют вращениям вектора состояния в трехмерном пространстве`. В интерпретации спина проблем нет. Это наше привычное евклидово пространство. Однако в каком пространстве вращается вектор изотопического спина? Со времен введения понятия изотопического спина (Гейзенберг, 1932) произносили слова, похожие на заклинание: вектор изотопического спина вращается в воображаемом "зарядовом" пространстве.
-----------------------------------------------------------` На теоретико-групповом языке изотопический и обычный спины соответствуют неприводимым представлениям группы SU(2) (SU - аббревиатура слов: специальная, унитарная. Символ 2 обозначает, что группа соответствует двумерному комплексному пространству). -----------------------------------------------------------
Однако, используя язык расслоенных пространств, этому заклинанию можно придать некоторый физико-геометрический смысл. Допустим, что изотопическое пространство является слоем над базой - пространством Евклида (Минковского). Иначе говоря, мы представляем реальное физическое пространство как расслоенное пространство с базой - видимым пространством и слоем - изотопическим (зарядовым) пространством. Нам нужно, чтобы свойства этого слоя удовлетворяли двум условиям: 1) слой должен быть трехмерной сферой (аналог пространства, в котором вращается вектор обычного спина), 2) размеры этой сферы должны быть очень малы, во всяком случае, много меньше расстояний 10**-16 см, хорошо изученных на опыте. Если бы радиус слоя превышал 10**-16 см, то слой изотопическое пространство - проявлялся бы на экспериментах, в основе которых лежат представления о реальном физическом пространстве. Этот эффект, например, проявлялся бы в отклонении наблюдаемого сечения рассеяния позитронов на электронах от вычисленного значения сечения. Поскольку такое отклонение отсутствует, то следует сделать вывод, что если изотопическое пространство и реально, то его размеры (размеры слоя) весьма малы. В дальнейшем, в гл.3, мы оценим эти размеры.
Исключительная малость размеров изотопического пространство делает в известном смысле иллюзорной попытку провести грань между словами "реальное" и "воображаемое" пространство. На опыте это пространство ненаблюдаемо, а слова: "изотопическое пространство есть слой над базой видимое пространство" - имеют в значительной степени филологические смысл.
===РИС.5
Подобная квалификация кажется тем более оправданной, поскольку простая геометризация изотопического спина никак не увязывается с взаимодействием частиц. Чтобы реализовать связи в треугольнике геометрия - изотопический спин взаимодействие, нужна руководящая идея. Пока мы ограничимся постулированием такой идеи, а в гл.3 подробно изложим аргументы в ее пользу.
В настоящее время представляется, что основой сформулированного выше "треугольника" является калибровочная инвариантность. В качестве предварительного оправдания подобного постулата можно привести довод: калибровочная симметрия (правда, в различных модификациях) лежит в основе четырех известных взаимодействий.
Можно наглядно (но упрощенно) представить геометрическую интерпретацию изотопического спина (рис.5). К каждой точке прямой "прикреплена" сфера произвольного (единичного) радиуса, в которой вращается вектор состояния, зависящий от координаты. Разумеется, реально точка базового пространства имеет три, а не одно измерение, однако представить наглядную 4-мерную конструкцию невозможно.
9. МНОГОМЕРНАЯ ИНТЕРПРЕТАЦИЯ
ВЗАИМОДЕЙСТВИЙ
Для понимания дальнейшей процедуры геометризации взаимодействия нужно четко представить следующие положения:
1. Взаимодействие обуславливается свойствами частиц переносчиков взаимодействия, и в частности их изотопическим спином (см. Дополнения).
2. Состояние представляется вектором, вращающимся в слое расслоенного пространства.
Читать дальшеИнтервал:
Закладка: