Всеволод Зенкович - Морское дно
- Название:Морское дно
- Автор:
- Жанр:
- Издательство:Государственное издательство технико-теоретической литературы
- Год:1956
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Всеволод Зенкович - Морское дно краткое содержание
Книга из серии «Научно-популярная библиотека», посвящённая исследованию морских и океанских глубин.
«О морском дне можно рассказать много интересного…
В этих суровых условиях — в полном мраке, холоде и при огромном давлении — обитают разнообразные существа — морские животные и рыбы…
На дне моря происходят необычные для суши процессы — создаются особые минералы и горные породы; здесь накапливается „пыль“ из межпланетных пространств».
Морское дно - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Уже первые исследователи пытались выяснить, изменяется ли состав донных отложений в толще дна и носит ли такое изменение слоистый характер. Этот интерес совершенно естественен: ведь слоистость присуща большинству древних горных пород, образовавшихся в морских бассейнах. Однако употреблявшиеся на первых порах приборы весьма примитивного устройства не давали возможности получить столбик грунта высотой более 80–90 сантиметров. Обычно такие пробы давали совершенно однородный осадок, и лишь в отдельных случаях были получены различные по составу столбики грунта.
Было установлено, что в средней части Атлантического океана в некоторых случаях глобигериновый ил оказался залегающим на глубоководной глине. Там же, ближе к берегам, глобигериновый ил залегал на иле, имеющем материковое происхождение. Наконец, в антарктических водах под слоем диатомового ила были встречены ледниково-морские отложения, представляющие собой разновидность материкового ила с примесью валунов, гальки и т. д. Такие отложения разносятся по морю айсбергами.
Эти находки показали, что в сравнительно недавнее время климатические условия океанов претерпели резкие изменения. Их можно связать только с ледниковым периодом, который закончился на земном шаре около 8000—10 000 лет назад. В этот период айсберги заходили в низкие широты (близкие к экватору) и рассеивали по океану свой твёрдый материал.
Описанная картина строения морского дна не могла, однако, удовлетворить интересы геологов. Новый исключительно интересный материал был получен лишь в последние десятилетия, благодаря изобретению новых совершенных приборов и методов исследования морского дна. Одним из таких приборов явился эхолот.
Как устроен современный эхолот
Если крикнуть в горах, то через короткое время мы услышим отзвук — эхо. Причина этого известного природного явления проста. Звук — это колебания частиц воздуха или иной среды (воды, металла и т. д.). От источника звука распространяется звуковая волна, подобная той, которую мы часто наблюдаем на поверхности воды. Если на пути звуковой волны встречается какое-либо большое препятствие, то она частично отражается им и возвращается обратно в виде эха [7] О звуках рассказывается в брошюрах «Научно популярной библиотеки» Гостехиздата: Б. Н. Суслов, Звук и слух, В. Д. Охотников, В мире застывших звуков, и проф. Б. Б. Кудрявцев, Неслышимые звуки (ультразвуки).
.
Звук распространяется не мгновенно, а с определённой скоростью. Для воздуха эта скорость приблизительно равна 340 метрам в секунду. Поэтому эхо будет слышно тем быстрее, чем ближе преграда, от которой отразился звук.
На использовании этих свойств и построен эхолот — прибор для измерения глубины моря по времени прохождения звуковой волны от источника звука до морского дна и обратно. Эхолот имеет длинную историю; разработать точный метод измерения глубин с помощью звука было очень трудно. Только в последние десятилетия благодаря новейшим достижениям физики этот способ нашёл практическое применение.
Первые действующие образцы эхолотов, в которых звук производился путём взрыва, удара пули о воду или удара молоточка о металлическую пластинку, были созданы в 20-х годах нашего столетия. Звук отражался от дна, а эхо улавливалось наблюдателем на борту судна с помощью специальных усилительных приборов. Однако точность такого метода была невелика, так как момент возвращения звуковой волны отмечался человеком на слух.
Этого удалось избежать, когда для излучения и улавливания звука было использовано одно интересное свойство кристаллов — так называемый пьезоэлектрический эффект. Если кристалл, например кварц, подвергнуть сжатию или растяжению, то на его гранях возникают электрические заряды. Если, наоборот, к граням кристалла присоединить металлические пластины — электроды и подключить их к электрической батарее, то кристалл немного сожмётся или, наоборот, расширится (это зависит от того, на какой грани сосредоточен положительный заряд, и на какой отрицательный). Такое явление и называется пьезоэлектрическим эффектом (пьезо по-гречески означает давить) [8] Подробнее о пьезоэлектрических свойствах кристаллов рассказывается и брошюре «Научно-популярной библиотеки» Гостехиздата: А. Ф. Плонский. Пьезоэлектричество.
. Если же подключить электроды к источнику переменного тока [9] Направление переменного тока периодически изменяется, число таких изменений в секунду называется его частотой.
, то кристалл начнёт попеременно сжиматься и растягиваться с частотой этого тока Когда частота таких колебаний лежит в области звуковых частот [10] Звуковыми называют частоты примерно от 16 до 20 000 колебаний в секунду, слышимые человеческим ухом.
, кристалл издаёт сильный звук. И, наоборот, если мы поместим кристалл на пути звуковых волн, то под воздействием звука он станет вибрировать, и на его электродах возбудится слабый переменный ток, который с помощью специальных приборов может быть усилен до нужной величины.
Вот как в общих чертах работает эхолот. Электроды кристалла на мгновенье подключаются к источнику переменного тока. При этом в воде, окружающей кристалл, возникает кратковременный импульс звуковых волн — своего рода всплеск. Он достигает дна и, отразившись от него, возвращается обратно к кристаллу, возбуждая в нём ответный импульс тока. Специальные электрические приборы «засекают» время посылки и время возвращения звукового импульса, а отсюда определяют и глубину моря.
Но крупные кристаллы кварца редки и дороги. Поэтому кварцевый кристалл в эхолоте заменён так называемым триплетом — набором из нескольких тонких кварцевых пластинок в стальной оправе.
Вместо кварцевых триплетов часто применяют наборы металлических пластинок из сплава железа с никелем. Такие пластинки также обладают свойством колебаться с частотой переменного тока. Но здесь это связано с особыми магнитными свойствами материалов.
Звуковая волна в воде распространяется от источника звука во все стороны. Когда дно почти горизонтально, это обстоятельство значения не имеет, но представим себе, что судно приближается к крутой наклонной скале (рис. 9). Тогда обратно к судну первым возвратится эхо от ближайшей точки дна, а уже потом добежит эхо, отражённое от дна под корпусом корабля. В таком двойном эхе будет трудно разобраться. Результат измерения глубины над наклонным дном будет всегда несколько меньше, чем в действительности. Чтобы избежать подобных ошибок, стали применять колебания более частые, чем звуковые, — ультразвуки. В современных образцах эхолотов частота колебаний составляет более 50 000 в секунду. Ультразвуковые волны можно посылать узким пучком (подобно лучу света) в нужном направлении, например, вертикально вниз.
Читать дальшеИнтервал:
Закладка: