Ирина Радунская - Безумные идеи
- Название:Безумные идеи
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ирина Радунская - Безумные идеи краткое содержание
Безумные идеи - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вновь и вновь обсуждалась работа Бора, Крамерса и Слетера, которые еще в 1924 году пытались устранить противоречие между волновой и корпускулярной картинами. Они считали электромагнитные волны не реальными полями, а волнами вероятности, показывающими, где скорее всего должен появиться квант света – фотон. Но эта упрощенная точка зрения оказалась неверной. Она приводила, в частности, к возможности нарушения закона сохранения энергии в элементарных актах, а это было недопустимым прегрешением против святая святых природы.
Закон сохранения энергии не мог быть нарушен. Взаимосвязь между волновой и корпускулярной картинами должна была быть более сложной. Однако идея вероятностной интерпретации вновь и вновь порывалась на поверхность копенгагенского «котла».
Использовав идеи Шредингера, Макс Борн предположил, что волна вероятности – это не трехмерная волна, аналогичная радиоволнам, свету или упругим волнам, а шредингеровская волна в многомерном пространстве. Это уже не волна материи, не материальный заменитель электрона, фотона или другой частицы, а абстрактный математический образ, тесно связанный с этими частицами. Борн предположил, что квадрат от амплитуды (высоты) этой незримой нематериальной волны определяет вероятность появления частицы в данном месте и в данный момент. Представить эту волну как нечто материальное невозможно и не нужно, но она удивительным образом позволяла согласовать теорию с экспериментом.
Эта трактовка не приводила к нарушению закона сохранения энергии. Но оставалось много неясностей: как определять, например, такую основную и, казалось, простую величину, как скорость частицы?
Дорогая цена
Выход из положения снова указал Гейзенберг. Стремясь к формальной стройности теории и много размышляя над философией проблемы, он сформулировал знаменитое соотношение неопределенностей. Оно было предельно просто: произведение ошибок в определении положения частицы и ее скорости не может быть меньше определенной величины, тесно связанной со знаменитым квантом, введенным еще Планком.
Гейзенберг не давал математического анализа истоков этого соотношения. Он вывел его из простого мысленного эксперимента и показал, что на опыте оно всегда справедливо. Он продемонстрировал новые возможности, открывающиеся, если признать это соотношение, в качестве основного закона микромира.
Новое соотношение, возведенное в ранг принципа неопределенности, позволило придать квантовой механике формальное совершенство и внутреннюю непротиворечивость. Но эти преимущества оказались оплаченными дорогой ценой. Квантовой механике пришлось отказаться от детального, наглядного описания процессов.
Исчезла наглядность, столетиями помогавшая ученым в их путешествиях по дебрям неведомого. Нельзя было даже мысленно проследить за траекторией движения электрона – ведь для этого нужно было одновременно знать его положение и скорость, а теория объявила это невозможным. Теории пришлось даже отказаться от возможности подробного анализа причин явлений микромира. Новая теория разорвала цепь бытия.
«Пала связь времен. Зачем же я связать ее рожден?» – вероятно, задавали себе не раз гамлетовский вопрос физики, приговорившие себя к добровольной каторге на галерах микромира. От привычной канвы событий остались отдельные звенья, связанные лишь нематериальными математическими формулами. Можно было вычислить лишь вероятность того, что за данной причиной наступит определенное следствие.
В науку вторглась случайность, но не случайность классической физики, бывшая лишь результатом отказа от чересчур громоздких вычислений в очень сложных задачах, а новая случайность, которая приобретала принципиальный характер. Выявились новые вероятностные закономерности, управляющие микромиром.
Оказывалось, что природа устроена так, что в ней не всегда действуют простые механические причинные связи.
Это была знаменитая копенгагенская интерпретация, родившаяся в результате ожесточенных споров и напряженного творчества многих ученых.
Ее положения совершенствовались и уточнялись еще в продолжение длительного времени в ходе новых широких дискуссий.
Двойное решение
Ученым старшего поколения – Лорентцу, Эйнштейну, Планку и многим другим, стихийно стоявшим на позициях материализма, копенгагенская интерпретация казалась неприемлемой.
Они считали, что классическая причинность является непременным элементом природы и всякая физическая теория должна быть способна однозначно описывать связь между причиной и следствием.
Замечательный французский физик Ланжевен, например, называл разговоры о крахе причинности интеллектуальным развратом. Все они не сомневались в том, что частицы и поля существуют в пространстве и что движение частиц – это перемещение из одной точки пространства в другую. Если бы частица окрашивала свой путь в пространстве, мы должны были бы видеть ее след; точки, в которых она побывала, должны слиться в непрерывную линию – траекторию. Копенгагенская интерпретация заменяла эту линию толстым шнуром, темным в середине и постепенно светлеющим по краям. По оси этого шнура лежит наиболее вероятная траектория, но частица может оказаться сколь угодно далеко от нее, а затем вновь обнаружится вблизи середины. Вероятностная интерпретация не позволяет одновременно предсказать точное значение положения частицы и ее скорости. Понятие определенной траектории заменяется облаком вероятности.
Против такой интерпретации восставал и де Бройль, считавший задачей физической теории подробное описание явлений микромира и не допускавший отказа от классической причинности. Шредингер тоже считал эти затруднения недостатком теории.
Но, несмотря на настойчивые усилия де Бройля, ему не удалось создать математического аппарата, позволяющего во всех деталях проследить за ходом событий микромира.
Он исходил из того, что в будущей теории понятия волны и частицы должны сохранить свой обычный характер. Частицу следует рассматривать, следуя образному выражению Эйнштейна, как горб – некоторую особенность – на хребте волны. Но как осуществить эту программу? В результате напряженных усилий де Бройль пришел к тому, что он назвал «теорией двойного решения». Суть этой теории в том, что уравнения волновой механики должны допускать два решения – одно, обладающее «особенностью», должно реально представлять существующую частицу, другое – совершенно «гладкое» – должно давать лишь вероятностное описание перемещения облака частиц.
Однако математическое обоснование этой теории, полученное де Бройлем, не удовлетворило его, поэтому, опубликовав программную статью, он не развил этих идей и перешел к более осторожной теории волны-лоцмана, в соответствии с которой волна, получающаяся в решениях уравнений квантовой механики, указывает дорогу движению частицы.
Читать дальшеИнтервал:
Закладка: