Джеймс Глейк - Хаос. Создание новой науки
- Название:Хаос. Создание новой науки
- Автор:
- Жанр:
- Издательство:Амфора
- Год:2001
- Город:Санкт-Петербург
- ISBN:5-94278-139-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джеймс Глейк - Хаос. Создание новой науки краткое содержание
В 1970-х годах ученые начинают изучать хаотические проявления в окружающем нас мире: формирование облаков, турбулентность в морских течениях, колебания численности популяций растений и животных… Исследователи ищут связи между различными картинами беспорядочного в природе.
Десять лет спустя понятие «хаос» дало название стремительно расширяющейся дисциплине, которая перевернула всю современную науку. Возник особый язык, появились новые понятия: фрактал, бифуркация, аттрактор…
История науки о хаосе — не только история новых теорий и неожиданных открытий, но и история запоздалого постижения забытых истин. Эта книга — яркое и образное повествование о сложных и глубоких вещах, окрашенное драматизмом и поэтичностью. Прочитав «Хаос», вы уже никогда не будете смотреть на мир прежними глазами.
Хаос. Создание новой науки - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Медали Филдза Смэйл был удостоен за выдающиеся исследования в области топологии — раздела математики, который начал развиваться в XX веке, достигнув особого расцвета в 50-е годы. Предметом топологии являются те свойства и качества, которые остаются неизменными (или инвариантными) при деформации геометрических фигур путем скручивания, сжатия или растяжения. Очертания и величина фигур — квадратные они или круглые, большие или маленькие — для топологии не столь важны, так как могут быть изменены деформацией. Для тополога представляет интерес другое: есть ли на поверхности фигуры разрывы или отверстия, не имеет ли она форму узла. Предмет исследования топологии не одно-, дву- и трехмерные поверхности, как в Евклидовой геометрии, а многомерные пространства, не поддающиеся отчетливому визуальному представлению. Объекты топологии подобны геометрическим телам на растягивающейся листовой резине, и рассматривает она не столько количественные, сколько качественные характеристики, т. е. раскрывает структуру в целом, не вдаваясь в измерение ее параметров. Смэйл разрешил одну из основных, имеющих длинную историю задач топологии — так называемую проблему Пуанкаре для пятимерного пространства и пространств большей размерности. Благодаря этому он встал в один ряд с выдающимися собратьями по ремеслу. Тем не менее в 60-х годах Смэйл, оставив топологию, вступил на неизведанную почву — занялся динамическими системами.
Возникновение топологии и теории динамических систем восходит еще ко временам Анри Пуанкаре, который считал эти дисциплины двумя сторонами одной медали. На рубеже веков Пуанкаре, последним из великих математиков, применил геометрию для описания законов движения в физической. Вселенной. Пуанкаре раньше всех осознал проблему хаоса. Его работы содержат смутные указания на возможную непредсказуемость, столь же трудноуловимую, как и в исследованиях Лоренца. Однако после смерти французского математика топологию ожидал расцвет, а динамические системы — забвение. Само понятие вышло из употребления. Предмет, на который обратил свое внимание Смэйл, назывался теорией дифференциальных уравнений. Последние использовались для описания изменений системы во времени, причем, в согласии с господствующей традицией, объекты рассматривались «локально». Подразумевалось, что инженер или физик примет во внимание лишь один набор параметров, передающих движение в данный момент времени. Смэйл, как и Пуанкаре, стремился исследовать явления в глобальном масштабе, желая постигнуть все богатство возможностей сразу.
Любая совокупность уравнений, описывающих динамическую систему (в частности, уравнения Лоренца), позволяет установить определенные начальные параметры. В случае с тепловой конвекцией, например, один из заданных параметров характеризует вязкость жидкости. Значительные изменения исходных данных могут повлечь за собой ощутимые перемены в системе, скажем, расхождение между пребыванием системы в стабильном состоянии и ее периодическими колебаниями. Однако физики предположили, что слабые изменения способны вызвать лишь незначительное расхождение в числовых данных, но никак не в качественном поведении системы.
Увязав топологию и динамические системы, ученые получили бы возможность использовать некую форму для наглядного представления всего разнообразия моделей поведения систем. Если система сравнительно проста, эта форма очертаниями может напоминать изогнутую поверхность. Сложные системы обладают множеством измерений. Точка на поверхности описывает состояние системы в определенный момент времени. По мере развития системы во времени точка передвигается через всю поверхность, описывая на ней своеобразную траекторию. Легкий изгиб формы соответствует изменению параметров системы, повышению вязкости жидкости или небольшому увеличению движущей силы маятника. Приблизительно одинаковые формы свидетельствуют о приблизительно одинаковом поведении. Если форма доступна зрительному представлению, систему можно решить.
Когда Смэйл обратился к динамическим системам, топологией, как и вообще математикой, занимались люди, относившиеся с пренебрежением к прикладному применению математических знаний. Физика и топология — дисциплины, родственные по происхождению. Однако математики начисто забыли об этом, изучая очертания фигур ради них самих. Смэйл, будучи до мозга костей математиком, разделял общее заблуждение, полагая, впрочем, что кое-что в топологии может обогатить и физику. Того же мнения держался в начале XX века Пуанкаре.
Так случилось, что первый шаг в новой области Смэйл сделал в неверном направлении. Он предложил закон, гласивший примерно следующее: система может вести себя беспорядочно, но подобное поведение не является устойчивым. Устойчивость — «устойчивость по Смэйлу», как иногда называли ее математики, — представляла собой решающее свойство. Устойчивым именовалось такое поведение системы, которое не могло измениться только в силу крохотной флуктуации одного из численных параметров. Любая система обнаруживает как упорядоченное, так и хаотичное поведение. Уравнения, которые описывают стоящий вертикально на острие грифеля карандаш, математически весьма удачно решаются, если центр тяжести карандаша располагается прямо над точкой опоры. Однако поставить карандаш в такое положение нельзя, поскольку оно нестабильно, — едва заметные колебания выводят систему из равновесия. С другой же стороны, шарик, лежащий в лунке, там и останется. Даже если его слегка потревожить, шар вернется в прежнюю позицию. Согласно гипотезе Смэйла, любое поведение системы, фактически доступное регулярному наблюдению, должно являться устойчивым, так как небольшие помехи и изменчивость в реальных системах неизбежны, а мы никогда не знаем точных параметров. Если вам необходима модель, физически реальная и одновременно противостоящая незначительным изменениям, то такая модель, по мнению большинства физиков, определенно является устойчивой.
Зима 1959 г. принесла Смэйлу, находившемуся тогда в Рио-де-Жанейро, плохие новости. Вскоре после Рождества в дом, где он обитал с женой и двумя малышами, принесли письмо от коллеги. Высказанная Смэйлом догадка пролила свет на целую группу устойчивых дифференциальных уравнений, но не более того. С точки зрения Смэйла, к любой хаотичной системе можно было приближаться сколь угодно близко, используя выделенный им класс уравнений, но в этом он ошибался. В письме его коллега сообщал, что многие системы вовсе не так понятны, как представлялось Смэйлу. В доказательство автор письма приводил систему, где сосуществовали хаос и устойчивость. И эта система была вполне «крепкой»! Слегка потревожив ее, можно было заметить, как появляются непрогнозируемые черты, а ведь в реальности в любую природную систему вторгается посторонний шум. Устойчивая, но поражающая своей необычностью… Смэйл с недоверием вчитывался в строки письма, однако через некоторое время убедился в правоте коллеги.
Читать дальшеИнтервал:
Закладка: