Джеймс Глейк - Хаос. Создание новой науки

Тут можно читать онлайн Джеймс Глейк - Хаос. Создание новой науки - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Амфора, год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джеймс Глейк - Хаос. Создание новой науки краткое содержание

Хаос. Создание новой науки - описание и краткое содержание, автор Джеймс Глейк, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В 1970-х годах ученые начинают изучать хаотические проявления в окружающем нас мире: формирование облаков, турбулентность в морских течениях, колебания численности популяций растений и животных… Исследователи ищут связи между различными картинами беспорядочного в природе.

Десять лет спустя понятие «хаос» дало название стремительно расширяющейся дисциплине, которая перевернула всю современную науку. Возник особый язык, появились новые понятия: фрактал, бифуркация, аттрактор…

История науки о хаосе — не только история новых теорий и неожиданных открытий, но и история запоздалого постижения забытых истин. Эта книга — яркое и образное повествование о сложных и глубоких вещах, окрашенное драматизмом и поэтичностью. Прочитав «Хаос», вы уже никогда не будете смотреть на мир прежними глазами.

Хаос. Создание новой науки - читать онлайн бесплатно полную версию (весь текст целиком)

Хаос. Создание новой науки - читать книгу онлайн бесплатно, автор Джеймс Глейк
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Неожиданно, когда значение параметра превысило 3, линия раздвоилась. Численность воображаемой стаи рыб в предыдущий и последующий годы колебалась между двумя точками, не являясь единой величиной. Начиная с меньшего числа, она возрастала, а затем беспорядочно варьировалась до появления устойчивых отклонений в ту и другую стороны. Рост «холмика» на графике — небольшое увеличение параметра — вновь расщеплял колебания, генерируя ряд чисел, приходивших, в конечном счете, к четырем различным значениям, каждое из которых повторялось с регулярностью раз в четыре года [4] Скажем, при r = 3,5 и начальной численности популяции 0,4 Мэй увидел следующий числовой ряд: 0,4000; 0,8400; 0,4704; 0,8719; 0,3908; 0,8332; 0,4862; 0,8743; 0,3846; 0,8284; 0,4976; 0,8750; 0,3829; 0,8270; 0,4976; 0,8750; 0,3829; 0,8270; 0,5008; 0,8750; 0,3828; 0,8269; 0,5009; 0,8750; 0,3828; 0,8269; 0,5009; 0,8750 и т. д. . Теперь компьютерная популяция Мэя увеличивалась и убывала в устойчивом четырехлетнем режиме. Длительность цикла вновь выросла в два раза — сначала с одного года до двух, затем — до четырех. И вновь подобное «круговое» поведение в итоге обнаружило стабильность: какова бы ни была начальная численность популяции, изменения ее укладывались в рамки четырехлетнего цикла.

Рис 32 Удвоение периодов и хаос Вместо применения отдельных диаграмм для - фото 8

Рис. 3.2. Удвоение периодов и хаос. Вместо применения отдельных диаграмм для демонстрации изменений в популяциях с различной степенью воспроизводства Роберт Мэй, наряду с другими учеными, использовал так называемую разветвленную диаграмму, чтобы соединить все данные в одном изображении. На диаграмме показано, каким образом изменение одного параметра, в данном случае — способности живущей в естественных условиях популяции к снижению и увеличению числа составляющих ее особей, повлияет на поведение рассматриваемой простой системы в целом. Значения параметра откладывались слева направо по горизонтальной оси; значения конечной численности популяции — по вертикальной. В известном смысле рост значения параметра знаменует перегрузку системы, увеличение в ней нелинейного элемента. Когда это значение невелико (слева) , популяция угасает. По мере его роста (в центре) популяция достигает равновесия. Затем, при дальнейшем увеличении параметра, равновесное состояние расщепляется на две ветви, подобно тому как в процессе конвекции дальнейшее нагревание жидкости делает ее нестабильной. Начинаются колебания численности популяции между двумя различными уровнями. Расщепления, или разветвления, происходят все быстрее и быстрее. Далее система становится хаотичной (справа) , и численность особей может приобретать бесконечное множество значений.

Построение графика — единственное, что позволяет обнаружить в указанных результатах хоть какой-то смысл и представить их наглядно. Мэй сделал предварительный набросок, чтобы охватить все типы поведения системы при различных параметрах. Для значений параметра, возраставших слева направо, была выбрана горизонтальная ось, для численности популяции отводилась вертикальная. Каждое из значений параметра было представлено точкой, обозначавшей конечный результат после достижения системой равновесия. Слева, там, где значения еще были небольшими, результат являл собой лишь точку. Таким образом, изменения параметра отобразились в виде линии, поднимавшейся слева направо. Когда значение параметра миновало первый критический рубеж, Мэю пришлось вычертить кривую для двух популяций, поскольку линия раздвоилась, образовав искривленную букву Y или подобие вил. Такое расщепление соответствовало переходу популяции от однолетнего цикла к двухлетнему.

По мере дальнейшего роста значения параметра количество точек удваивалось вновь и вновь, что просто ошеломляло ученого, поскольку столь сложное поведение таило в себе обманчивую устойчивость. Мэй назвал наблюдаемый феномен «змеей в джунглях математики». Раздвоения на графике изображались разветвлениями основной линии, и каждое из этих разветвлений означало, что повторяющийся образец далее вновь разделится на части. Популяция, ранее характеризовавшаяся стабильностью, колебалась между двумя различными уровнями каждый второй год. Популяция, менявшаяся в течение двухлетнего цикла, изменялась теперь в течение третьего и четвертого годов, переходя, таким образом, к четырехлетнему периоду.

Подобные разветвления наблюдались на графике все чаще и чаще — 4, 8, 16, 32… — и вдруг внезапно прекратились. После определенной точки аккумуляции периодичность уступала место хаосу, колебаниям, которые никогда не затухали, и поэтому целые зоны на графике были полностью затушеваны. Наблюдая за популяцией животных, описанной этим простейшим уравнением, можно посчитать происходящие год за годом перемены совершенно случайными, привнесенными извне. Тем не менее в самой гуще подобной беспорядочности вновь появляются стабильные циклы. Так, с возрастанием параметра неожиданно обозначается просвет с правильным, хотя и странным периодом, вроде 3 или 7. Модель меняющейся популяции повторяла саму себя в течение трехлетнего или семилетнего цикла. Затем снова, в более высоком темпе, начинались разветвления, которые удваивали период, быстро минуя новые циклы (3, 6, 12… или 7, 14, 28…) и вновь обрываясь с рождением нового хаоса.

Первоначально Мэй не разглядел все изображение, однако те его фрагменты, которые он смог просчитать, представлялись ему весьма неустойчивыми. В системе реального мира наблюдатель видел лишь вертикальную часть, соответствующую каждый раз лишь одному параметру, а значит, рассматривал лишь один из типов поведения — вероятно, стабильное состояние, может быть, семилетний цикл или видимую невооруженным глазом беспорядочность. И совсем невозможно было догадаться, что одна и та же система при небольшом изменении одного из параметров могла обнаружить совершенно не похожие друг на друга типы поведения.

Джеймс Йорк с математической точностью проанализировал описанные явления в упомянутой выше работе, доказав, что в любой одномерной системе происходит следующее: если появляется регулярный цикл с тремя волнами, то в дальнейшем система начнет демонстрировать как правильные циклы любой другой продолжительности, так и полностью хаотичные. Это открытие подействовало на физиков вроде Фримена Дайсона словно электрошок, ибо противоречило интуиции. Им казалось вполне тривиальной задачей построение системы, которая повторяет саму себя в трехволновых колебаниях без всякого проявления хаоса. Йорк доказал, что это невозможно.

Хотя подобное предположение выглядело весьма смелым, Йорк посчитал, что общественный резонанс, вызванный его работой, перевесит ее математическое содержание, и отчасти оказался прав. Несколько лет спустя он прибыл на международную конференцию в Восточный Берлин. По окончании докладов Йорк решил прокатиться по реке Шпрее. Во время прогулки с ним попытался заговорить какой-то русский. Обратившись за помощью к знакомому поляку, Йорк понял, что русский математик достиг идентичного результата. Собеседник Йорка отказался вдаваться в детали, пообещав лишь выслать свою статью, которая и пришла через четыре месяца. Как выяснилось, А. Н. Сарковский несколько опередил Йорка. Однако Йорк достиг большего, чем просто математический результат: он продемонстрировал физикам, что хаос вездесущ, стабилен и структурирован. Он дал повод поверить в то, что сложные системы, традиционно сводившиеся к трудным для решения дифференциальным уравнениям, могли быть описаны с помощью довольно простых графиков.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джеймс Глейк читать все книги автора по порядку

Джеймс Глейк - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Хаос. Создание новой науки отзывы


Отзывы читателей о книге Хаос. Создание новой науки, автор: Джеймс Глейк. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x