Джеймс Глейк - Хаос. Создание новой науки

Тут можно читать онлайн Джеймс Глейк - Хаос. Создание новой науки - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Амфора, год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джеймс Глейк - Хаос. Создание новой науки краткое содержание

Хаос. Создание новой науки - описание и краткое содержание, автор Джеймс Глейк, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В 1970-х годах ученые начинают изучать хаотические проявления в окружающем нас мире: формирование облаков, турбулентность в морских течениях, колебания численности популяций растений и животных… Исследователи ищут связи между различными картинами беспорядочного в природе.

Десять лет спустя понятие «хаос» дало название стремительно расширяющейся дисциплине, которая перевернула всю современную науку. Возник особый язык, появились новые понятия: фрактал, бифуркация, аттрактор…

История науки о хаосе — не только история новых теорий и неожиданных открытий, но и история запоздалого постижения забытых истин. Эта книга — яркое и образное повествование о сложных и глубоких вещах, окрашенное драматизмом и поэтичностью. Прочитав «Хаос», вы уже никогда не будете смотреть на мир прежними глазами.

Хаос. Создание новой науки - читать онлайн бесплатно полную версию (весь текст целиком)

Хаос. Создание новой науки - читать книгу онлайн бесплатно, автор Джеймс Глейк
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 43 Фрактальный берег Береговая линия генерирована компьютером Детали - фото 12

Рис. 4.3. Фрактальный берег. Береговая линия генерирована компьютером. Детали ее не упорядочены. Однако фрактальное измерение постоянно, так что шершавости и неровности выглядят все теми же, независимо от степени увеличения.

Геометрия Евклида, оперирующая длинами, ширинами и высотами, не позволяла постичь сущность неправильных форм, и Мандельбро пришло в голову отталкиваться от идеи размерности, в которой ученые усматривают гораздо больше, чем обыватели. Напомню, что мы живем в трехмерном пространстве: чтобы определить положение точки, надо задать три координаты, например долготу, широту и высоту. Оси трехмерного пространства представляют собой три взаимно перпендикулярные линии, пересекающиеся в начале координат. Это все еще территория Евклидовой геометрии, где пространство характеризуется тремя измерениями, плоскость — двумя, прямая — одним, а точка имеет нулевую размерность.

Абстрактная процедура, позволившая Евклиду постичь одномерные и двухмерные объекты, может быть с легкостью применена и к явлениям повседневной жизни. Так, из чисто практических соображений карта дорог являет собой двухмерный объект — фрагмент плоскости, в котором для адекватного отражения изображаемого задействованы два измерения. Безусловно, реальные дороги трехмерны, как и все остальное, однако их высота столь трудноуловима (и в общем-то не существенна для их эксплуатации), что ее можно не учитывать. Заметим, что карта дорог остается двухмерной даже тогда, когда ее сворачивают. Так и нить всегда имеет лишь одно измерение, а частица или точка не имеют его вовсе.

А сколько измерений у клубка бечевки? По мнению Мандельбро, ответ на этот вопрос зависит от уровня восприятия. С огромного расстояния клубочек представляется не более чем точкой с нулевой размерностью. Приближаясь, можно заметить, что он подобен сфере и, таким образом, характеризуется уже тремя измерениями. На еще более близком расстоянии становится различимой сама бечевка, а объект приобретает одно измерение, скрученное таким образом, что задействуется трехмерное пространство. Вопрос о числе цифр, определяющих положение точки, остается актуальным: пока мы вдалеке, нам не нужно ни одной, поскольку мы видим лишь точку; приблизившись, мы нуждаемся уже в трех, а подойдя еще ближе, довольствуемся одной, так как любое заданное положение вдоль всей длины бечевки неповторимо, независимо от того, вытянута ли она или смотана в клубок.

Продвигаясь далее, к более мелким, видимым только под микроскопом деталям, обнаружим следующее: бечевка состоит из скрученных трехмерных протяженных объектов, а те, в свою очередь, — из одномерных волокон, вещество которых распадается на частицы с нулевыми измерениями. Так Мандельбро, поправ математические традиции, обратился к относительности, заявив: «Представление о том, что численный результат измерений зависит от отношения объекта к наблюдателю, вписывается в понятия современной физики и даже является их превосходной иллюстрацией».

Оставив в стороне философию, мы увидим, что реальные измерения объекта оказываются отличными от его трех земных параметров. Ахиллесовой пятой выдвинутых Мандельбро аргументов оказалось то, что они основывались на слишком смутных понятиях — «издалека» и «чуть ближе». А что наблюдается в промежутке? Бесспорно, провести строгую черту, по пересечении которой клубок бечевки превращается из трехмерного объекта в одномерный, невозможно. Тем не менее у рассуждений Мандельбро была и сильная сторона: неточное определение дальности перемещений заставило по-новому взглянуть на проблему размерности.

Мандельбро двигался от целочисленных размерностей 0, 1, 2, 3… к тому, что казалось невозможным, — к дробным измерениям. Представление о них было столь экстравагантным, что ученые-нематематики не столько осмысливали его, сколько принимали на веру. Тем не менее неожиданный подход оказался чрезвычайно перспективным.

Дробное измерение позволяет вычислять характеристики, которые не могут быть четко определены иным путем: степени неровности, прерывистости или неустойчивости какого-либо объекта. Например, извилистая береговая линия, несмотря на неизмеримость ее «длины», обладает присущей только ей шероховатостью. Мандельбро указал пути расчета дробных измерений объектов окружающей действительности при использовании определенной методики построения форм или некоторых заданных величин. Создавая свою геометрию, он выдвинул закон о неупорядоченных формах, что встречаются в природе. Закон гласил: степень нестабильности постоянна при различных масштабах. Справедливость этого постулата подтверждается вновь и вновь. Мир снова и снова обнаруживает устойчивую неупорядоченность.

Однажды зимним днем 1975 г. Мандельбро работал над своей первой монографией. Размышляя о явлении параллельных токов, он понял, что должен найти некий термин, который стал бы стержнем новой геометрии. Одолжив у сына латинский словарь, он стал перелистывать его и наткнулся на слово fractus, образованное от глагола fragere — «разбивать». Слово было созвучно английским fracture (разрыв) и fraction (дробь). Так Мандельбро придумал термин fractal (фрактал), которое вошло как существительное и прилагательное в современный английский и французский языки.

Фрактал позволяет вообразить бесконечность.

Представьте себе равносторонний треугольник с длиной стороны в один фут. А теперь мысленно проделайте следующую несложную трансформацию: выделите на каждой стороне треугольника среднюю треть и приставьте к ней равносторонний треугольник, длина стороны которого составляет одну треть от длины стороны исходной фигуры. Вы получите звезду Давида. Она образована уже не тремя отрезками длиной в один фут, а двенадцатью отрезками длиной в четыре дюйма, и вершин у нее не три, а шесть.

Повторите операцию, прикрепив еще более маленький треугольник к средней трети каждой из двенадцати сторон. Если проделывать эту процедуру вновь и вновь, число деталей в образуемом контуре будет расти и расти, подобно тому как дробится последовательность Кантора. Изображение приобретает вид снежинки с геометрически идеальными очертаниями. Оно известно как кривая Коха. Связная линия, составленная из прямых или криволинейных участков, названа по имени шведского математика Хельга фон Коха, впервые описавшего подобный феномен в 1904 г.

Рис 44 Снежинка Коха Приблизительная но весьма удачная модель береговой - фото 13

Рис. 4.4. «Снежинка» Коха. «Приблизительная, но весьма удачная модель береговой линии» — так охарактеризовал ее Мандельбро. Чтобы создать подобную конструкцию, начнем с построения треугольника, каждая сторона которого равна единице. В середину каждой стороны встроим новый треугольник, уменьшенный в три раза, и повторим преобразования многократно. Длина контура полученной фигуры равна 3 × 4/3 × 4/3 × 4/3… и так далее до бесконечности. Однако ее площадь все же меньше площади окружности, описанной около первоначального треугольника. Таким образом, бесконечно длинная линия очерчивает ограниченную площадь.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джеймс Глейк читать все книги автора по порядку

Джеймс Глейк - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Хаос. Создание новой науки отзывы


Отзывы читателей о книге Хаос. Создание новой науки, автор: Джеймс Глейк. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x