А. Лельевр - Альманах Эврика-84
- Название:Альманах Эврика-84
- Автор:
- Жанр:
- Издательство:Молодая Гвардия
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
А. Лельевр - Альманах Эврика-84 краткое содержание
Альманах Эврика-84 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Но сначала необходимо создавать горячую плазму в лабораторных условиях, используя для ее удержания магнитные поля. Однако плазма — очень капризный объект исследования — нередко внезапно теряет устойчивость в магнитном поле.
В целом поведение горячей плазмы характеризуется столь обширным набором явлений, что ее исследования по сложности сравнимы с изучением биологических систем. Подобно тому как человек или животное нуждается в медицинском диагнозе, «четвертое состояние вещества» также необходимо уметь диагностировать. Вот почему методы его исследования принято называть диагностикой плазмы.
Среди них особую роль в последнее время стала играть так называемая корпускулярная диагностика. Она основана на изучении слабых потоков нейтральных атомных частиц, которые испускает горячая плазма. Около двадцати лет назад ученые Физико-технического института имени А. Ф. Иоффе во главе с Н. Федоренко высказали мысль о том, что эти потоки должны нести богатую информацию о процессах, происходящих в недрах плазмы и, в частности, о температуре термоядерного горючего — изотопов водорода.
Стоит отметить, что до тех пор не существовало сколько-нибудь надежных способов измерения температуры ионов водорода в горячей плазме. Трудность здесь заключается в том, что любой прибор, помещенный в среду с температурой в миллионы градусов, должен либо охладить ее, либо сгореть. Следовательно, судить о параметрах плазмы надо на расстоянии, и «термометр» должен быть бесконтактным.
Методы регистрации и анализа испускаемых плазмой атомов, разработанные советскими учеными, и созданная ими для этой цели уникальная аппаратура — анализаторы атомных частиц — позволили решить проблему измерения температуры водорода в горячей плазме.
Затем ученым удалось осуществить методику искусственного стимулирования потока атомов из определенной точки плазмы, что дало возможность измерять локальную температуру разогретого до многих миллионов градусов водорода. Ныне корпускулярная диагностика включает целый комплекс экспериментальных методик, который обеспечивает измерение и контроль как температуры, так и всех важнейших параметров ионов в термоядерных установках. Эта диагностика сформировалась в самостоятельное направление в области исследования горячей плазмы.
Для того чтобы на основе анализа потоков частиц получить четкое представление о процессах, протекающих внутри плазмы, выяснить механизмы нагрева ионов и их охлаждения, найти каналы ухода энергии, понадобились математические модели поведения ионов в термоядерных установках. Совместными усилиями ученых Института атомной энергии и МГУ такие модели были созданы. Они позволяют не только описывать явления, протекающие в действующих термоядерных установках, но и прогнозировать параметры плазмы в установках ближайшего будущего.
В течение последнего десятилетия комплекс методов корпускулярной диагностики и математического моделирования явлений в плазме был применен на термоядерных установках типа «токамак» в Институте атомной энергии. Результаты использования созданной советскими учеными — разнообразной диагностической аппаратуры совместно с глубоко разработанными математическими моделями баланса энергии и частиц в плазме оказались весьма впечатляющими. Исследователям удалось решить не только проблему надежного определения важнейших параметров, но и обнаружить и изучить закономерности нагрева и удержания водорода в «токамаках». Корпускулярная диагностика будет использоваться как важный способ контроля параметров плазмы на термоядерных установках следующих поколений вплоть до реактора управляемого термоядерного синтеза.
Работы советских ученых открывают также перспективы дальнейшего развития исследований горячей плазмы на «токамаках», которые позволяют вплотную подойти к получению самоподдерживающейся управляемой термоядерной реакции. Такие условия будут созданы, в частности, в «Токама-ке-15», который должен быть введен в строй в текущей пятилетке.
В области корпускулярной диагностики и математического моделирования процессов нагрева плазмы советским ученым принадлежит бесспорный мировой приоритет. По запросам зарубежных термоядерных центров соответствующая аппаратура поставлена в ФРГ, США, Францию, Англию, Японию, Швейцарию, ЧССР, ВНР, то есть практически во все страны, проводящие термоядерные исследования. Советские ученые по приглашению своих коллег неоднократно успешно выполняли эксперименты на зарубежных термоядерных установках с помощью созданной в СССР аппаратуры. Методы математического моделирования нагрева и удержания ионов в плазме термоядерных установок, развитые нашими учеными, послужили основой программы таких работ в ведущих научных центрах за рубежом.
В работе стеклодува есть что-то от колдовства. Вот он концом металлической трубки поддевает немного расплавленной массы, подносит другой конец ко рту — и кажется, будто трубка превратилась в волшебную флейту. Мастер покачивает ее, вращает из стороны в сторону. И багровый сгусток расплава, словно цветок, на глазах принимает очертания изящной вазы с тончайшими стенками.
Вот если бы так можно было выдувать изделия из металла! Но в ответ на такое предположение любой технолог только улыбнется: даже на мощных прессах из металлического листа не всегда удается вытянуть объемную деталь — он просто рвется. До недавнего времени лишь стекло, нагретое до вязкой массы, отличалось редкой пластичностью: слабые легкие человека могут заставить его удлиняться в размерах в 500–600 раз! Близкими свойствами сегодня обладают и некоторые из пластмасс. Но заставить растягиваться, как податливую резину, прочнейший металл?..
Вполне реально. Титановый сплав можно заставить удлиняться даже в две тысячи раз. Для этого надо перевести его в сверхпластичное состояние…
Сверхпластичность. Впервые это понятие вошло в обиход науки с легкой руки академика А. Бочвара. Но само явление, открытое на кончике пера теоретиков, оказалось крепким орешком: до сих пор до конца неясно, почему металл, пройдя определенную термообработку и снова нагретый примерно до половины температуры плавления, вдруг начинает послушно растягиваться при сравнительно небольших усилиях. Правда, этот «пробел в знаниях» не остановил ученых Московского института стали и сплавов, — объединив усилия нескольких кафедр, они научились переводить в сверхпластичное состояние целую гамму металлов.
Есть одно бесспорное условие: металл становится сверхпластичным лишь после того, как приобретает мелкозернистое строение. Если обычно его кристаллы имеют разллеры от десятков до сотен микрон, то в сверхпластичном состоянии — от одного микрона до десяти. Можно подумать, что такие мелкие «зерна» гораздо слабее «привязаны» к своим местам и легко «перетекают» друг относительно друга. Отсюда и преимущества новой технологии…
Читать дальшеИнтервал:
Закладка: