А. Лельевр - Альманах Эврика-84
- Название:Альманах Эврика-84
- Автор:
- Жанр:
- Издательство:Молодая Гвардия
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
А. Лельевр - Альманах Эврика-84 краткое содержание
Альманах Эврика-84 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Американский математик Кастнер изобрел «самое большое число» и назвал его «гугол». Это единица со ста нулями! То есть, 10 100. Хотя естественный ряд чисел и бесконечен, все же в известной мере гугол — это граница исчисляемого мира.
Дадим простор своему воображению и попытаемся проверить это утверждение. Вычислим площадь Земли в квадратных миллиметрах — можно надеяться, что получится головокружительная величина. Ничего подобного. Площадь земного шара равна 5x10 20квадратных миллиметров.
Если же подсчитаем объем Земли в кубических миллиметрах, то получим чуть большее число — 10 30. Но и это слишком мало по сравнению с гуголом. Если предположить, что в одном кубическом миллиметре вместится десять песчинок, и подсчитать их количество в объеме Земли, то получится всего 10 31. Иными словами, Земля слишком мала для какого бы то ни было вычисления в масштабах гугола.
Возьмем просторы космоса и попытаемся выразить расстояние между звездами в ангстремах — один ангстрем равен одной десятимиллионной части миллиметра. Обычно межзвездные расстояния измеряют в световых года — это расстояние, которое солнечный луч проходит за год, — приблизительно 9,5 триллиона километров. И если выразить световой год в ангстремах, то получим 10 26ангстрема. И расстояние до самых удаленных галактик не превышает 6х10 27ангстрем.
Предположим, что Вселенная имеет ограниченные размеры (что не доказано) и сопоставим этот самый крупный физический объект, известный людям, с ядром атома — одним из самых малых объектов, изученных физиками. Соотношение между ними составит 10 40. Это также не гугол.
А теперь подсчитаем возраст Вселенной. Самое короткое время, которое мы используем в этом вычислении, составляет тот миг, который необходим световому лучу, чтобы пересечь диаметр атомного ядра. Получается, что возраст Вселенной в этих единицах составляет также 10 40.
Пересчитаем все атомные частицы, существующие в известной нам Вселенной: протоны, электроны, нейтроны, а также нейтрино и фотоны. Даже в одной пылинке содержится несколько миллиардов элементарных частиц. А во Вселенной их 10 88— то есть миллионная миллионной части гугола!
До сих пор мы пользовались только статистическими величинами: длиной, объемом, количеством частиц. Интересно затронуть и динамические величины, например энергию. Энергия, излучаемая всеми звездами во Вселенной, должна быть исключительно велика. Но даже выраженная в микроваттах, она не достигает 10 40.
Гугол недостижим, даже если подсчитать, сколько энергии содержится во всем веществе Вселенной.
Часть VI. ЭНЕРГИЯ С ОРБИТЫ
Вице-президент Академии наук СССР, академик Е. Велихов рассказывает о перспективах термоядерной энергетики.
Ни для кого не секрет, что сегодня энергетическая проблема — одна из самых главных и в нашей стране, и во всем мире. Но в отличие от многих стран мы обладаем богатыми источниками топливных ресурсов. Например, на территории СССР сосредоточена почти половина мировых залежей угля. Кроме того, имеются солидные запасы газа, сланцев. Далеко не в полную силу мы используем нетрадиционные источники энергии — ветер, солнце, воду. Поэтому сейчас дело не столько в дефиците топлива, сколько в том, как создать более экономичные источники энергии. Ведь для того, чтобы перекачивать газ, предположим, из Западной Сибири в центральные районы страны, требуются большие капиталовложения в строительство газопровода, эксплуатационных сооружений и т. д.
Каковы преимущества термоядерного синтеза? Можно сказать, что он решает одну из главных проблем энергетики — проблему» транспортировки топлива. Ядерное топливо можно будет получать практически везде, где необходимо.
Всегда возникает вопрос — оправдано ли то, что мы занимаемся этой проблемой? Ведь технически процесс термоядерного синтеза сложен и дорог. Да, сейчас все эксперименты обходятся недешево, но игра, как говорится, стоит свеч. Простой пример: при ядерном слиянии одного килограмма изотопов водорода выделяется в 10 миллионов раз больше энергии, чем при сжигании одного килограмма угля. Овладев термоядерным синтезом, мы решим энергетическую проблему.
Для того чтобы началась термоядерная реакция, необходима температура в 100 миллионов градусов. Для сравнения — на поверхности Солнца температура «всего» 6 миллионов градусов. Время горения надо поддерживать в течение секунды. Мы сегодня уже знаем, как это сделать. В СССР созданы так называемые «токамаки» (тороидальные установки, где горючее разогревается в значительной степени электрическим полем и удерживается в камере мощным магнитным полем), которые являются прообразами будущих промышленных электростанций.
Советские специалисты считают, что будущие термоядерные электростанции должны быть сделаны с использованием сверхпроводящих обмоток. Это необходимо для того, чтобы не тратить колоссальную энергию на поддержание магнитного поля, стабилизирующего и удерживающего плазму.
Небольшой опыт работы со сверхпроводящими обмотками у нас уже есть. В частности, несколько лет назад начались эксперименты с «Токамаком-7», магнитная система которого выполнена с использованием сверхпроводящей обмотки.
Сегодня мы научились греть плазму до термоядерных температур с помощью уникальных генераторов сверхвысокочастотных радиоволн — гиротронов. На Т-10 благодаря применению гиротронов удалось получить плазму с электронной температурой свыше 30 миллионов градусов.
Сейчас мы работаем над созданием Т-15. Эта установка реакторного масштаба. В отличие от трех установок подобного типа, которые строятся в США, Англии и Японии, Т-15 будет единственной со сверхпроводящими обмотками. Надеемся, что на ней удастся поднять температуру плазмы до 100 миллионов градусов при достаточно высокой ее плотности.
Приходится преодолевать немало трудностей. Например, большая проблема — создание технологии получения сверхпроводника, состоящего из сплава ниобия и олова. Этим занимается ряд институтов.
Когда вступит в строй первая промышленная термоядерная электростанция? Точно сказать непросто. Дело в том, что энергетика очень капиталоемкая отрасль. Все установки типа «токамаков» не только стоят довольно дорого, но требуют новых технических решений. Поэтому часто бывают трудности с финансированием, изготовлением оборудования, получением новых материалов. Все это растягивает сроки ввода в строй новых реакторов.
Советский Союз предложил построить интернациональный термоядерный реактор «Интор», проект которого разрабатывается международной группой ученых и инженеров под эгидой МАГАТЭ. «Интор» уже прошел международное обсуждение. Сейчас советские специалисты совместно со специалистами других стран работают над совершенствованием его параметров. Прежде всего с точки зрения улучшения эксплуатационных качеств и уменьшения стоимости.
Читать дальшеИнтервал:
Закладка: