Коллектив авторов - Концепции современного естествознания: Шпаргалка

Тут можно читать онлайн Коллектив авторов - Концепции современного естествознания: Шпаргалка - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент «РИОР»47f3ef35-f8ea-102d-b528-b4a213751508, год 2011. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Коллектив авторов - Концепции современного естествознания: Шпаргалка краткое содержание

Концепции современного естествознания: Шпаргалка - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В шпаргалке в краткой и удобной форме приведены ответы на все основные вопросы, предусмотренные государственным образовательным стандартом и учебной программой по дисциплине «Концепции современного естествознания».

Книга позволит быстро получить основные знания по предмету, повторить пройденный материал, а также качественно подготовиться и успешно сдать зачет и экзамен.

Рекомендуется всем изучающим и сдающим дисциплину «Концепции современного естествознания»

Концепции современного естествознания: Шпаргалка - читать онлайн бесплатно ознакомительный отрывок

Концепции современного естествознания: Шпаргалка - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Максимумы интенсивности находятся в тех областях экрана, для которых оптическая разность хода кратна целому числу длин волн, а именно Δ = S 2– S 1= ± mλ, где S 1и S 2– оптический путь первой и второй волны соответственно, λ – длина волны света, m = 0, 1, 2, 3, … Это означает, что колебания векторов напряженности электрического поля в данной области экрана синфазны и, следовательно, интенсивность света будет иметь максимальное значение.

Минимумы интенсивности имеются там, где оптическая разность хода кратна полуцелому числу длин волн, т. е. Δ = ±(m + 1/ 2)λ. В этом случае колебания векторов напряженности электрического поля происходят в противофазе и волны гасят друг друга.

Рис 1Схематическое изображение установки для проведения опыта Юнга по - фото 26

Рис. 1.Схематическое изображение установки для проведения опыта Юнга по интерференции света и распределение интенсивности света I на экране

28. ДИФРАКЦИЯ СВЕТА

Дифракцией называется совокупность явлений, наблюдаемых в среде с резкими неоднородностями (границы непрозрачных или прозрачных тел) и связанных с отклонениями от законов геометрической оптики. Дифракция, в частности, приводит к огибанию световыми волнами препятствий и проникновению света в область геометрической тени.

Наблюдение дифракции осуществляется обычно по следующей схеме. На пути световой волны, распространяющейся от некоторого источника, помещается непрозрачная преграда, закрывающая часть волновой поверхности световой волны. За преградой располагается экран, на котором при определенных условиях возникает дифракционная картина. Рассмотрим в качестве примера дифракцию от щели, когда волновая поверхность ограничена двумя полуплоскостями, расположенными на расстоянии b друг от друга.

Если экран располагается близко от щели, то, как показывает опыт и теоретические расчеты, при выполнении условия b 2/(/λ) >> 1 (/ – расстояние от щели до экрана; λ – длина волны света) на экране будет наблюдаться четкое изображение щели, т. е. в этом случае будет выполняться закон прямолинейного распространения света. При увеличении расстояния от щели до экрана, когда начинает выполняться условие b 2/(/ λ) ~ 1, граница света и тени на изображении щели становится размытой, а распределение интенсивности света в центральной части изображения щели становится неоднородным – появляются минимумы и максимумы интенсивности. Это означает, что дифракция света начинает играть существенную роль

и законы геометрической оптики перестают работать. Дифракция света, имеющая место при выполнении указанного условия, носит название дифракции Френеля.

При дальнейшем увеличении /, когда начинает выполняться условие b 2/(/λ) << 1, в каждую точку на экране приходят почти параллельные лучи от волновой поверхности в области щели и дифракционная картина приобретает иной вид: она имеет четко выраженную систему максимумов и минимумов, глубоко заходящих в область геометрической тени. Дифракцию, возникающую при этом условии, называют дифракцией Фраунгофера.

29. КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ СВЕТА

Изучение явлений интерференции, дифракции, поляризации электромагнитных волн (упорядочения колебаний векторов напряженностей электрического и магнитного полей) и дисперсии света (круга явлений, в которых важную роль играет зависимость показателя преломления среды от длины волны) привело, как это могло показаться, к окончательному утверждению волновой теории света. Однако при исследовании теплового излучения энергии нагретыми телами, фотоэлектрического эффекта (испускания электронов веществом под действием электромагнитного излучения), рассеяния рентгеновского излучения веществом было установлено, что объяснить эти явления в рамках электромагнитной теории Максвелла не удается.

Разрешить эти противоречия удалось благодаря смелой гипотезе, высказанной в 1900 году немецким физиком М. Планком,согласно которой излучение света происходит не непрерывно, а дискретно, т. е. определенными порциями (квантами), энергия которых определяется частотой v:

ε = , (1)

где е – энергия кванта; h = 6,63 10 -34Дж • с – постоянная Планка (квант действия), являющаяся одной из универсальных постоянных в физике.

Развивая идею Планка, Эйнштейн в 1905 году выдвинул гипотезу о том, что свет не только излучается квантами, но распространяется и поглощается квантами, и на ее основе объяснил фотоэффект. С квантами света стали ассоциировать реальные элементарные частицы, которые были названы в 1929 году американским физико-химиком Г. Льюисом(1875–1946) фотонами. Фотон является особой частицей, так как в отличие от других частиц (электронов, протонов и т. п.) он существует только в движении, причем скорость его движения равна скорости света. Масса фотона равна нулю. Энергия фотонов определяется формулой Планка (1), а импульс

p = h /λ, (2)

где p – импульс фотона; λ – длина волны.

Исследуя процессы излучения, Эйнштейн в 1909 году установил, что свет одновременно обладает и корпускулярными, и волновыми свойствами, т. е. свету фактически присущ корпускулярно-волновой дуализм(двойственность), который нельзя объяснить с позиций классической физики. Таким образом, можно сказать, что свет представляет собой единство противоположных свойств – корпускулярного (квантового) и волнового (электромагнитного), дискретного и непрерывного. К корпускулярным параметрам, характеризующим свет, относятся энергия и импульс, а к волновым – частота и длина волны. Корпускулярные и волновые параметры связаны между собой через соотношения (1) и (2).

30. ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ БОРА

В 1927 году Борсформулировал принципиальное положение квантовой механики – принцип дополнительности,согласно которому получение экспериментальной информации об одних физических величинах, описывающих микрообъект (элементарную частицу, атом, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координата частицы и ее импульс (или скорость), потенциальная и кинетическая энергии и др.

Рассмотрим простой пример, который хорошо иллюстрирует принцип дополнительности. Бор обратил внимание на очень простой и понятный факт: координату и импульс микрочастицы нельзя измерить не только одновременно, но и с помощью одного и того же прибора. В самом деле, чтобы измерить импульс микрочастицы и при этом не очень сильно его изменить, необходим очень легкий подвижный прибор. Но именно эта подвижность приводит к тому, что при попадании в такой прибор микрочастицы его положение будет весьма неопределенно. Для измерения координаты мы должны взять другой, очень массивный прибор, который не сдвинется с места при попадании в него микрочастицы. Но в этом случае произойдет изменение импульса микрочастицы, которое прибор даже не заметит. Это простейшая экспериментальная иллюстрация к соотношению неопределенностей Гейзенберга: нельзя в одном и том же опыте определить обе характеристики микрообъекта – координату и импульс. Для этого необходимы два измерения и два принципиально разных прибора, свойства которых дополняют друг друга.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Концепции современного естествознания: Шпаргалка отзывы


Отзывы читателей о книге Концепции современного естествознания: Шпаргалка, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x