Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира
- Название:E=mc2. Биография самого знаменитого уравнения мира
- Автор:
- Жанр:
- Издательство:КоЛибри
- Год:2009
- ISBN:978-5-389-00499-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Боданис - E=mc2. Биография самого знаменитого уравнения мира краткое содержание
В 1905 году, выведя свое знаменитое уравнение Е=mc2, Альберт Эйнштейн подарил миру мощный источник энергии и открыл новые пути к познанию Вселенной. И теперь, более ста лет спустя, блестящий популяризатор науки Дэвид Боданис увлекательно и просто рассказывает об этом великом открытии. Герои его захватывающей, как детектив, книги — выдающиеся физики, среди которых Фарадей, Резерфорд, Ферми, Оппенгеймер, Гейзенберг и конечно же гениальный Эйнштейн.
E=mc2. Биография самого знаменитого уравнения мира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Что мог он сделать с этой находкой? По протоколу Ремеру следовало позволить Кассини представить ее как результат собственных трудов — ну и скромно покивать, когда директор обсерватории сделает, докладывая о них, паузу, дабы отметить, что он не смог бы осуществить их без помощи вот этого молодого человека, дальнейшая карьера которого заслуживает пристального внимания.
Ремер этим путем не пошел. В августе он через посредство почтенного журнала, который читали все серьезные астрономы, бросил Кассини вызов. Астрономия наука точная и даже инструменты семнадцатого столетия были достаточно хороши, чтобы установить: Ио должен выйти из-за Юпитера под вечер 9 ноября текущего года. Из рассуждений Кассини следовало, что спутник можно будет увидеть в 5.27 пополудни. Предсказание это было получено экстраполяцией времени, в которое Ио был ясно виден в последний раз, что как раз в августе и случилось.
Ремер заявил, что предсказание Кассини ошибочно. В августе, объяснил он, Земля находилась к Юпитеру ближе, чем будет находиться в ноябре. В 5.27 Ио никто не увидит — свет, сколь бы быстро он ни распространялся, все еще будет находиться в пути, поскольку ему придется пройти большее, нежели в августе, расстояние. Ни к 5.30, ни даже к 5.35 он все еще не успеет пересечь солнечную систему. 9 ноября спутник станет виден лишь в 5.37.
Порадовать астрономов можно разными способами. Открытие суперновой, к примеру, вещь хорошая, продление правительственного субсидирования — тоже, получение пожизненной должности и того лучше. Однако яростная свара двух выдающихся коллег? Это источник просто-напросто райского наслаждения. Ремер бросил свой вызов отчасти из гордости, но отчасти и потому, что знал: как политик, Кассини значительно превосходит его. Ремер мог добиться признания своих заслуг, только сделав предсказание настолько внятное и недвусмысленное, что Кассини и его приспешникам не удастся, когда станет ясной их неправота, отвертеться от этого факта.
Предсказание было обнародовано в августе. 9 ноября обсерватории Франции да и всей Европы нацелили телескопы на Юпитер. Часы показали 5.27 пополудни. Ио видно не было.
5.30 — Ио все еще нет как нет.
5.35.
А затем спутник появился — если быть точным, в 5 часов, 37 минут и 49 секунд.
И Кассини заявил, что ошибка его отнюдь не доказана! (Изображать свои оплошности, как достижения люди научились задолго до эпохи телевидения.) У Кассини имелось множество сторонников, — и они, как то и положено, приняли его сторону. Кто и когда говорил, что Ио ожидается в 5.25? Один только Ремер, заявили сторонники. А кроме того, всем же известно, что указать точное время появления Ио не удавалось никогда. Расстояние до него огромное, толком разглядеть его трудно, — возможно, потому, что облака, плавающие в верхних слоях атмосферы Юпитера создают дымку, которая искажает точную картину, а возможно, по той причине, что сколько-нибудь определенные наблюдения затруднены большим углом наклона его орбиты. Сказать трудно.
В обычных рассказах из истории науки предполагается, что такого просто не может быть. Ремер поставил безупречный опыт, сделал ясное предсказание, и тем не менее, астрономы Европы не пожелали признать, что свет распространяется с конечной скоростью. Сторонники Кассини победили, официальная точка зрения, согласно которой скорость света есть величина загадочная, неизмеримая и никакого воздействия на астрономические измерения не оказывает, устояла.
Ремер сдался, вернулся в Данию и провел там многие годы на посту директора копенгагенского порта. Новые эксперименты, убедившие астрономов в его правоте, были поставлены лишь пятьдесят лет спустя — после того, как миновали два поколения, а Жан Доминик Кассини скончался. Полученное в них значение скорости света было близким к лучшим из современных его оценок, дающих примерно 300000000 м/сек. (На самом деле, скорость света несколько меньше, однако для удобства мы будем использовать на протяжении всей этой книги значение округленное — 300 миллионов метров в секунду.)
Чтобы продемонстрировать, насколько велика эта скорость, довольно сказать, что, развив ее, вы можете добраться от Лондона до Лос-Анджелеса за 1/20 секунды. Это и объясняет, почему в эксперименте Галилея не удалось установить время, за которое свет пересекает долину под Флоренцией, — слишком мало было расстояние.
А вот еще одно сравнение: Мах 1 это скорость звука, составляющая около 300 м/с. Реактивный «Боинг 747» развивает скорость немного меньшую, чем Мах 1. Космический шаттл может набирать после первого включения двигателей больше Мах 20. Астероид или комета, которая пробила океанское дно и погубила динозавров, имела в момент столкновения скорость, равную Мах 70.
«с» равна Мах 900000.
Столь огромная скорость приводит к возникновению множества любопытных эффектов. Если человек, сидящий ресторане за несколько столиков от вас, ссорится с кем-то по телефону, вам кажется, что вы слышите произносимые им слова в тот самый миг, в какой они срываются с его губ. Однако звук распространяется в воздухе всего лишь с малой скоростью, равной Мах 1, тогда как радиосигналы, которые генерирует сотовый телефон, летят со скоростью света. Женщина, с которой разговаривает этот человек, — даже если она находится в сотнях километров от вас, — услышит его слова до того, как они проковыляют по воздуху несколько метров и доберутся до ваших ушей.
Чтобы понять, почему Эйнштейн включил в свое уравнение именно скорость света, нам необходимо повнимательнее приглядеться к внутренним свойствам самого света. Мы оставляем позади эпоху Кассини и Ремера и перебираемся в конец 1850-х, в период, предшествующий Гражданской войне в Америке, — в то время, когда пожилой уже Майкл Фарадей вступил в переписку с Джеймсом Клерком Максвеллом, худощавым шотландцем, которому не исполнилось еще и тридцати лет.
Для Фарадея эта пора была трудной. Память его слабела, нередко ему приходилось начинать день с чтения пространных записей, посвященных тому, что он должен сделать сегодня. Хуже того, Фарадей сознавал, что великие физики мира, почти каждый из которых закончил элитарный университет, так и продолжают смотреть на него сверху вниз. Они принимали его практические лабораторные открытия, но и не более того. Для среднего физика электричество, протекающее по проводнику, мало чем отличалось от текущей по трубе воды: все считали, что после того, как была разработана, наконец, математика, лежащая в основе этого процесса, он перестал отличаться от того, что описывали Ньютон и множество его владеющих математическими методами последователей.
Фарадей, между тем, продолжал размышлять о странных кругах и линиях, исходя из воспринятых им в юности религиозных представлений. Пространство, окружающее любое проявление электромагнетизма, считал он, пронизано загадочным «полем», порождающим то, что интерпретируется нами как электрический ток и его подобия. Фарадей настаивал на том, что временами эту сущность можно едва ли не увидеть, — к примеру, в узорах, которые образуют насыпанные вокруг электромагнита металлические опилки. Однако никто Фарадея не слушал — за недавно появившимся исключением: молодым шотландцем по фамилии Максвелл.
Читать дальшеИнтервал:
Закладка: