Мартин Гарднер - Есть идея!
- Название:Есть идея!
- Автор:
- Жанр:
- Издательство:Мир
- Год:1982
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мартин Гарднер - Есть идея! краткое содержание
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.
Рассчитана на самый широкий круг читателей.
Есть идея! - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Четверичные карточки показывают, что «троичная сортировка» в некоторых отношениях превосходит двоичную. Если мы будем последовательно делить множество не на 2, а на 3 части и каждый раз нам будут говорить, какая из частей содержит выделенный элемент, то найти его можно, задавая меньше вопросов. Разумеется, сами вопросы становятся более сложными: если раньше они требовали «двоичных» ответов («да» или «нет»), то теперь ответ на каждый вопрос должен быть «троичным».
Необычайные возможности, таящиеся в троичной сортировке, наглядно демонстрирует следующий карточный фокус. Пусть кто-нибудь из зрителей задумает любую из 3³ = 27 отобранных вами карт. Сдайте отобранные карты в три стопки, переворачивая каждую карту перед тем, как выложить ее на стол, вверх лицом, попросите зрителя указать, в какой из стопок находится задуманная им карта, после чего сложите стопки вместе и повторите всю процедуру еще дважды. Сложив стопки в третий раз, попросите зрителя назвать вслух задуманную карту и, сняв верхнюю карту, покажите ее всем зрителям. У вас в руках окажется задуманная карта! Фокус можно показывать сколько угодно раз, не опасаясь «осечек» — их нет и быть не может!
Секрет фокуса прост: необходимо лишь всякий раз, когда вы складываете стопки, держа карты вверх рубашкой, стопку с задуманной картой класть поверх остальных. Неукоснительно придерживаясь этого правила, вы будете автоматически производить троичную сортировку карт, которая и заставит «всплыть» задуманную карту из глубин.
Нетрудно понять, почему так происходит. Принцип здесь тот же, что и при отгадывании телефонного номера, только множество делится каждый раз не на две, а на три равные или почти равные части. После первой сдачи задуманная карта оказывается среди 9 верхних карт, после второй сдачи она оказывается уже среди 3 верхних карт, а после третьей сдачи оказывается первой картой сверху. Если вы проделаете всю процедуру от начала до конца, держа карты вниз рубашкой и сдавая их снизу, то сможете наблюдать, как задуманная карта постепенно, в три этапа, спускается «на дно» перевернутой мини-колоды. Автоматическая сортировка элементов различных множеств, основанная на аналогичных принципах, играет важную роль в современной информатике — науке о накоплении, хранении и обработке информации.
Унесенная ветром

Боб и Элен решили провести летние каникулы в лесах штата Мэн, где в хижине жил дядюшка Генри.

Чтобы добраться до хижины, Бобу и Элен пришлось нанять лодку и идти на веслах вверх по течению.

Разумеется, грести вызвался Боб, а Элен села на руль. В 2 часа дня Элен сняла свою новую соломенную шляпку и повесила ее на румпель у себя за спиной.

Порывом ветра шляпку унесло, но ни Элен, ни Боб не заметили, когда это случилось.

Они успели отмахать на веслах 3 км вверх по течению, прежде чем Элен вспомнила о шляпке.
Элен. Стой! Где моя новая шляпка? Должно быть, ее унесло ветром.

Делать нечего! Пришлось повернуть назад. Боб налег на весла, и некоторое время спустя лодка настигла шляпку, плывшую по реке.

Предположим, что лодка всегда движется по воде со скоростью 6 км/ч, а скорость течения реки 2 км/ч.
В котором часу Боб и Элен догнали шляпку?

Вам удалось набрести на какую-нибудь идею, позволяющую легко и просто решить задачу? Хотите верьте, хотите проверьте, но течение одинаково сказывается на движении лодки и шляпки, и его воздействием можно пренебречь.

Значит, задачу можно решать так, как если бы лодка двигалась в стоячей воде, Боб и Элен уплыли от шляпки на расстояние 3 км, а затем вернулись, заметив пропажу. Их путь туда и обратно составил 6 км.

Так как лодка развивает скорость 6 км/ч, то весь путь туда и обратно Боб и Элен проделали за 1 ч. Следовательно, когда Элен выудила из воды шляпку, было 3 часа дня.
Потеряв шляпку, Элен и Боб сначала уплывают от нее вверх по реке, а затем, обнаружив пропажу, пускаются вдогонку за шляпкой вниз по реке. Время, затрачиваемое ими на весь путь туда и обратно (от шляпки и к шляпке), не зависит от скорости течения реки, потому что шляпка плывет по течению. В другом варианте задачи путь туда и обратно отсчитывается не от предмета, плывущего по течению, а от какого-нибудь неподвижного предмета на берегу.
Предположим, что никакого течения в реке нет. Боб и Элен идут на веслах 3 км вверх по реке от того места, где они взяли напрокат лодку, затем поворачивают и возвращаются назад. Весь путь туда и обратно занимает у них 20 мин.
Предположим теперь, что река, как ей и положено, течет от истока к устью со скоростью 2 км/ч, как в нашей задаче. Боб и Элен сначала поднимутся на веслах на 3 км вверх по реке, а затем снова вернутся туда, где взяли напрокат лодку. Сколько времени им придется затратить на весь путь туда и обратно на этот раз: больше или меньше 20 мин?
Трудно устоять перед искушением и не сказать, что время в пути останется прежним (20 мин), пояснив свою мысль примерно так: при движении вверх по реке течение уменьшает скорость лодки ровно на столько, на сколько увеличивает скорость лодки, идущей вниз по реке.
Это рассуждение не верно. Почему?
Правильное решение задачи мы получим, приняв во внимание, что на преодоление 3 км вверх по реке уходит больше времени , чем на преодоление тех же 3 км при движении вниз по реке. Следовательно, течение замедляет лодку дольше, чем подгоняет ее, и на путь туда и обратно по проточной воде требуется больше времени, чем на тот же путь в стоячей воде. Наш вывод нетрудно проверить, записав соответствующие алгебраические уравнения.
Читать дальшеИнтервал:
Закладка: