Юрий Курносов - Аналитика: методология, технология и организация информационно-аналитической работы
- Название:Аналитика: методология, технология и организация информационно-аналитической работы
- Автор:
- Жанр:
- Издательство:Русаки
- Год:2004
- Город:Москва
- ISBN:5-93347-151-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Курносов - Аналитика: методология, технология и организация информационно-аналитической работы краткое содержание
В книге рассматривается широкий спектр вопросов, связанных с методологией, организацией и технологиями информационно-аналитической работы (безотносительно к области деятельности). Книга содержит и разделы, непосредственно посвященные методам и приемам эффективной организации мыслительной деятельности (как учебной, так и профессиональной), и разделы, затрагивающие вопросы, связанные с разработкой технологического инструментария информационно-аналитической работы.
Раскрыта сущность интеллектуальных технологий. Определена роль ряда научных дисциплин, прежде всего философии, социологии, логики, математики, экономической науки, информатики, управленческой науки, психологии и др. в формировании современной русской аналитической школы. Показаны возможности использования методик и моделей системного анализа для исследования социально-политических и экономических процессов, прогнозирования и организации эффективного функционирования систем управления предприятиями и учреждениями на принципах развития, совершенствования процессов принятия управленческих решений.
Для специалистов, занятых в сфере информационно-аналитического обеспечения управленческой деятельности, руководителей информационно-аналитических центров и подразделений, сотрудников СМИ и PR-центров, научных работников, аспирантов и студентов.
Аналитика: методология, технология и организация информационно-аналитической работы - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Сегодня за рубежом (увы, не у нас) на решение этих проблем затрачиваются значительные средства. Например, для решения проблем, связанных с автоматизацией обработки и анализа текстов, в бюджете американской военной исследовательской организации DARPA на 2000 и 2001 гг. выделено 12 и 29 млн. долл., соответственно. Добавим лишь, что многие исследовательские программы финансируются еще и рядом фондов, в том числе — NSF (National Science Foundation) и другими. Грустно, но наши специалисты в этой отрасли все чаще вынуждены отправляться на поиски признания (а оно сейчас все больше выражается в денежных единицах) в университетские научные центры США, Великобритании и Германии, где существует понимание актуальности этого круга проблем. Мы же по-прежнему все работы сваливаем на самого надежного и дешевого (но и подверженного многим видам нарушающих цикл ИАР воздействий — см. далее) эксперта-аналитика.
Использование автоматизированных систем существенно сокращает время на проведение поиска, отбора и экспресс-анализа текстовых документов , и, хотя качество аннотирования (реферирования) пока не позволяет использовать подобные системы для генерации обзоров источников, а тексты, полученные с их помощью, нуждаются в правке и редактуре, но этого качества вполне достаточно для проведения экспресс-анализа данных. К числу серьезных недостатков этих систем следует отнести их неспособность восстанавливать системы внутри- и интертекстовых ссылок и умолчаний (случаи неявного упоминания слов и терминов), а, между тем, относительное количество различного рода подстановочных конструкций (например, замена слова или термина местоимением, прилагательным и т. п.) в текстах достаточно велико. Причины этого недостатка лежат на уровне аксиоматики методов и подходов, реализованных в данных системах. Так, например, Россия, Российская Федерация, наша Родина и РФ для большинства таких систем — суть разные объекты, то есть, система должна быть снабжена семантической сетью или тезаурусом, который мог бы «объяснить» программе, как поступать в таком случае.
5.2 Структурированные текстовые данные
Другим видом информационных ресурсов/источников являются источники структурированных текстовых данных, в том числе — формализованный текст, таблицы, базы и хранилища данных , предоставляющие возможности поиска и фильтрации данных в таблицах, организации виртуальных таблиц и витрин данных. Этот тип ресурсов обладает своей спецификой, поскольку для интерпретации данных, как правило, требуются двухуровневые модели интерпретации: потребитель данных должен располагать моделью организации данных (логических связей между таблицами и записями), а также моделью предметной области, в то время как для обычного текста достаточно только второго класса моделей. Более того, коммерчески распространяемые базы данных, как правило, представляют собой неоперативный источник информации, структурированный в соответствии с представлениями поставщика о потребностях клиентов. То есть, эти информационные продукты не всегда адаптированы к реальным потребностям и часто содержат устаревшую или неполную информацию. По этой причине, большинство организаций, осуществляющих функции ИАО субъектов управления в некоторой области деятельности создают свои собственные базы данных, в большей степени отражающие их информационные потребности.
В связи с этим, чрезвычайно важным фактором, определяющим успешность применения созданной базы данных, является структура описаний (совокупность атрибутов, используемых для описания объектов учета) . Если структура описаний не обеспечивает тех возможностей, которые необходимы потребителю для производства работ с ресурсами базы данных, то из эффективного инструмента информационной работы база данных превращается в кладбище данных, где на покосившихся крестах и памятниках давно повыцвели надписи. Уже на уровне структуры описаний должны быть учтены особенности технологии обработки информации, структура деловых процессов, возможности дальнейшего наращивания комплекса средств автоматизации, возможность востребования данных и без применения специализированных интерфейсов (программ иных, нежели программы системы управления базами данных) и так далее. В противном случае, в какой-то момент времени, когда очередная смена технологии потребует заменить интерфейсное программное обеспечение, вам придется проводить на заслуженный отдых не только эти программы, но и все те данные, которые были накоплены за годы работы вашей организации.
Вопросу атрибуции данных мы посвятим отдельный подраздел в данной главе. При этом мы не будем затрагивать проблему синтеза классификаций, которые используются для декомпозиции некоторой системы или предметной области на классы сущностей, описываемых набором атрибутов — эти вопросы подробно рассматриваются в специализированной литературе, посвященной вопросам теории баз данных, их проектирования, организации процесса проектирования и создания [60] Мейер Д. Теория реляционных баз данных: Пер. с англ. — М.: Мир, 1987, Васкевич Д. Стратегии Клиент/сервер. Руководство по выживанию для специалистов по реорганизации бизнеса. — К.: Диалектика, 1996.
. При рассмотрении вопросов, связанных с атрибуцией данных, наше внимание будет сосредоточено на проблеме создания специфических баз данных — баз данных, предназначенных для хранения первичных материалов ИАР (сообщений) и описания источников информации, адаптированных к решению задач автоматизированного анализа ситуаций .
Однако, прежде, чем перейти к рассмотрению этого блока вопросов, рассмотрим специфику структурированных источников информации.
Мы уже указали на необходимость использования для работы со структурированными данными двухуровневых моделей интерпретации, а именно — модели организации данных (метаданных или метамодели). Располагая такой моделью, аналитик получает уникальную возможность получения специализированных массивов данных, отражающих состояние некоторого атрибута объекта анализа. В том числе, благодаря наличию структурной организации, может быть легко получен упорядоченный во времени массив численных значений некоторого параметра системы или процесса, или, наоборот — мгновенный срез состояния системы, образованный совокупностью измерений всех ее параметров.
В этом смысле, база данных представляет собой уникальный источник информации, использование которого в сочетании со средствами автоматизации ИАР способно многократно повысить продуктивность труда аналитика. Характерно, что большинство технических средств сбора информации, выражающих результаты в символьном виде, способно служить источниками только таких — специализированных данных. Как следствие, методологическое обеспечение систем анализа структурированных и числовых параметрических данных во многом совпадает . Даже в случае, когда в качестве параметров используются естественно-языковые термины, они могут рассматриваться как численные оценки значения атрибута, между которыми могут быть установлены те или иные отношения (порядка, величины, объема понятия и т. д.). В результате для обработки таких данных могут быть (хоть и с некоторыми изменениями) применены пакеты автоматизированной статистической обработки данных наблюдений, системы математического моделирования и иные программные средства, располагающие широкими возможностями для проведения статистических исследований, анализа временных рядов, спектрального анализа и так далее.
Читать дальшеИнтервал:
Закладка: