Генрих Эрлих - Золото, пуля, спасительный яд. 250 лет нанотехнологий
- Название:Золото, пуля, спасительный яд. 250 лет нанотехнологий
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Генрих Эрлих - Золото, пуля, спасительный яд. 250 лет нанотехнологий краткое содержание
Генрих Эрлих – не только доктор химических наук, профессор Московского государственного университета и серьезный ученый, но и прекрасный научный популяризатор, умеющий увлекательно, просто, без единой формулы рассказать об очень сложных вещах. Говоря о нанотехнологиях, он разрушает множество мифов, например о том, что эти чудесные технологии по явились только сегодня. На самом деле, они существуют уже по крайне мере 250 лет, и за эти годы произошло много интересного – и в науках, и в технологиях. Обо всем этом, а еще и о судьбах удивительных людей, без которых наш мир сегодня был бы совсем другим, – эта книга.
Золото, пуля, спасительный яд. 250 лет нанотехнологий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Со слоями масла на воде связан еще один интересный эффект, который наблюдал Франклин, да и мы, но применительно к несколько другим объектам – пленкам бензина на воде и мыльным пузырям. Это цветная, зачастую переливчатая окраска этих объектов, притом что все задействованные вещества бесцветны. Современные школьники на уроках физики бойко объясняют этот эффект: “Распространение света – волновой процесс. Свет, падая на пленку, частично отражается от внешней поверхности, а частично проходит внутрь и отражается от второй поверхности. Волны, отраженные от двух поверхностей пленки, складываются по законам интерференции, волны с одной длиной волны усиливаются, а с другой – ослабляются вплоть до исчезновения. Так появляется цвет”.
Попробовали бы они сказать нечто подобное в середине XVIII века! За одну первую фразу их бы выгнали с волчьим билетом не то что из школы, но из любого университета. В науке тогда царила корпускулярная теория света Ньютона, согласно которой свет представляет собой поток материальных частиц, а волновая теория, созданная Гюйгенсом в конце XVII века, пребывала в загоне. Из крупных ученых того времени ее поддерживали разве что Леонард Эйлер и Бенджамин Франклин. Это тем более удивительно, что теория электричества Франклина может быть с полным основанием названа корпускулярной, а вот в оптике он придерживался диаметрально противоположной концепции. Тут можно говорить о его гениальной научной интуиции, но, возможно, сыграло свою роль и наблюдение за пленками масла на воде, ведь именно объяснение явления интерференции не давалось теории Ньютона, но с ним прекрасно справлялась волновая теория.
Так в научном наследии Бенджамина Франклина впервые сошлись поверхность и тонкие слои, электричество и оптические явления – краеугольные камни нанотехнологий. И потому его номер – первый.Вернемся к толщине слоя масла. Мы с вами прикинули, что она может составлять десять нанометров. Это много или мало? И можно ли утончить пленку, а если да, то до какого предела? Вы, конечно, знаете ответ на последний вопрос: сплошная пленка никак не может иметь толщину меньше, чем размер молекулы масла. И обратно: зная толщину предельно тонкого слоя масла [2] , можно определить размер молекулы. Неужели Франклин не сделал этот тривиальный эксперимент и не произвел элементарный расчет? Нет, не сделал. Нельзя требовать от одного, пусть и гениального, человека всего, тем более невозможного. Волновая теория во времена Франклина хотя бы была, а вот атомно-молекулярного учения не было. Было слово “молекула”, его ввел в 1636 году французский священник Пьер Гассенди, но оно не имело конкретного физического содержания. Поэтому со временник Франклина Михаил Васильевич Ломоносов (1711–1765) рассуждал, как мы помним со школы, не о молекулах, а о корпускулах, но эти идеи не оказали никакого влияния ни на Франклина, ни на других ученых. И даже отец современной атомистики Джон Дальтон (1766–1844) обходился без этого понятия и говорил о “сложных атомах”.
Так что определить размер молекулы из толщины слоя масла Франклин не мог в принципе. И лишь через сто лет после его кончины, повторив его эксперименты, это сделал Джон Уильям Стретт, лорд Рэлей (1842–1919). Он получил величину около двух нанометров – таков размер довольно крупных молекул масла.
Казалось бы, после этого нанообъекты должны были получить постоянную прописку в мире науки. Не тут-то было! Это в школьном учебнике все просто: атомно-молекулярное учение, основы которого заложили М.В. Ломоносов и Антуан Лавуазье (1743–1794), утвердилось благодаря работам Джона Дальтона (1766–1844) и Амадео Авогадро (1776–1856), окончательную точку поставил в 1860 году Международный конгресс в Карлсруэ, который был посвящен в основном вопросам терминологии, потому что существо дела ни у кого уже не вызывало сомнений. На самом деле вызывало, и у очень многих, считавших атомы и молекулы всего лишь гипотезой, пусть довольно хорошо обоснованной и внешне убедительной, по той простой причине, что никто никогда их не видел.
Помимо сомневающихся были и ярые противники. Например, Марселен Бертло (1827–1907), выдающийся ученый, выполнивший пионерские работы во многих областях химии, профессор Коллеж де Франс, непременный секретарь Французской академии наук и член-корреспондент Петербургской, министр народного просвещения и изящных искусств, а впоследствии министр иностранных дел Франции и прочая и прочая, считал само представление о молекуле бредовой идеей и называл ее не иначе как “мистической концепцией”. Смирился он с ней лишь в конце жизни. Как и другой, возможно, еще более великий ученый – Вильгельм Оствальд (1853–1932), один из первых лауреатов Нобелевской премии по химии (1909) “в признание работ по катализу, а также за исследования основных принципов управления химическим равновесием и скоростями реакций”.
Оствальд – чрезвычайно примечательная личность. Широтой интересов и продуктивностью в самых разных областях человеческой деятельности он напоминал Франклина. Помимо собственно химии, он оставил заметный след в живописи, теории музыки, лингвистике, участвовал в самых разных общественных движениях, от пацифистских до шовинистических, написал 77 книг и воспитал целую плеяду известных ученых.
А еще он был философом, последним великим натурфилософом, создателем “энергетической” теории, согласно которой энергия – единственная реальность в этом мире, а материя есть лишь форма проявления энергии, “то, что мы называем материей, является лишь совокупностью энергий, собранной воедино в данном месте”. В этой теории не было места атомам и молекулам.
В фундаментальном учебнике Оствальда “Основы неорганической химии” слово атом не упоминается ни разу. Вы можете себе такое представить? Вот и я не могу. Высший пилотаж! Причем это не был “альтернативный” учебник, которыми так богато наше время, а канонический труд, выдержавший множество переизданий, на нем выросло целое поколение химиков.
“Мы должны совершенно отказаться от надежды наглядно представить себе физический мир посредством сведения всевозможных явлений к механике атомов”, – писал Оствальд. Лозунг Оствальда “Не сотвори себе кумира в виде образа!” был практически реализован создателями квантовой механики, которые отказались от какой-либо наглядности в физике и свели все к абстрактным математическим построениям. Они, конечно, не отрицали существования атомов, но споры о том, можно ли увидеть эти атомы и тем более манипулировать ими, не стихали несколько десятилетий. Споры эти разрешились уже на нашей памяти, когда физикам удалось осуществить и то и другое. Это произвело на ученых столь сильное впечатление, что затмило прошлые достижения всех смежных наук и позволило им говорить о наступлении новой эпохи в развитии науки – эпохи нанотехнологий.
Читать дальшеИнтервал:
Закладка: