Денис Шевчук - Менеджмент: конспект лекций
- Название:Менеджмент: конспект лекций
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Денис Шевчук - Менеджмент: конспект лекций краткое содержание
В книге в доступной форме излагаются основы менеджмента – науки и практики управления. Менеджмент – научно—практическая и учебная дисциплина, посвященная проблемам управления в организации (на предприятии), на государственном, муниципальном и международном уровне. Описаны вопросы к арьеры и техника трудоустройства.
Для студентов и преподавателей вузов, слушателей институтов повышения квалификации, структур второго образования, курсов менеджмента и бизнес—школ. А также для широкого круга читателей, желающих познакомиться с современным менеджментом, от учащихся и учителей старших классов школ до менеджеров, экономистов, инженеров, самостоятельно повышающих квалификацию.
Автор книги – Заместитель генерального директора INTERFINANCE (ООО «ИНТЕРФИНАНС МВ», www.deniskredit.ru), имеет опыт работы в банках, коммерческих и государственных структурах (в т. ч. на руководящих должностях), преподавания различных дисциплин в ведущих ВУЗах Москвы (экономические, юридические, технические, гуманитарные), два высших образования (экономическое и юридическое), более 50 публикаций (статьи и книги).
Менеджмент: конспект лекций - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Пусть А и В – две кластеризованные ранжировки. Пару объектов (a,b) назовем «противоречивой» относительно А и В, если эти два элемента по—разному упорядочены в А и В, т. е. a < b в А и a > b в В (первый вариант противоречивости) либо a >b в А и a < b в В (второй вариант противоречивости). Отметим, что в соответствии с этим определением пара объектов (a,b), эквивалентная хотя бы в одной кластеризованной ранжировке, не может быть противоречивой: a = b не образует «противоречия» ни с a < b , ни с a > b.
В качестве примера рассмотрим две кластеризованные ранжировки В = [{1,2} < { 3,4, 5} < 6 < 7 < 9 < {8, 10}], C = [3 < {1, 4} < 2 < 6 < {5, 7, 8} < {9, 10}]. Совокупность противоречивых пар объектов для двух кластеризованных ранжировок А и В назовем «ядром противоречий» и обозначим S(A,B). Для рассмотренных выше в качестве примеров трех кластеризованных ранжировок А, В и С, определенных на одном и том же носителе {1, 2, 3,…, 10}, имеем S(A,B) = [(8, 9)], S(A,C) = [(1, 3), (2,4)], S(B,C) = [(1, 3), (2, 3), (2, 4), (5, 6), (8,9)]. Как при ручном, так и при программном нахождении ядра можно в поисках противоречивых пар просматривать пары (1,2), (1,3), (1.,4), …., (1, k), затем (2,3), (2,4), …, (2, k), потом (3,4), …, (3, k), и т. д., вплоть до (k–1, k).
Пользуясь понятиями дискретной математики, «ядро противоречий» можно изобразить графом с вершинами в точках носителя. При этом противоречивые пары задают ребра этого графа. Граф для S(A,B) имеет только одно ребро (одна связная компонента более чем из одной точки), для S(A,C) – 2 ребра (две связные компоненты более чем из одной точки), для S(B,C) – 5 ребер (три связные компоненты более чем из одной точки {1, 2, 3, 4}, {5, 6} и {8, 9}).
Каждую кластеризованную ранжировку, как и любое бинарное отношение, можно задать матрицей || x(a, b) || из 0 и 1 порядка k x k . При этом x(a, b) = 1 тогда и только тогда, когда a < b либо a = b . В первом случае x(b, a) = 0, а во втором x(b, a) = 1. При этом хотя бы одно из чисел x(a, b) и x(b, a) равно 1. Из определения противоречивости пары (a, b) вытекает, что для нахождения всех таких пар достаточно поэлементно перемножить две матрицы ||x(a,b)|| и ||y(a, b)||, соответствующие двум кластеризованным ранжировкам, и отобрать те и только те пары, для которых x(a,b)y(a,b)=x(b,a)y(b,a)=0.
Предлагаемый алгоритм согласования некоторого числа кластеризованных ранжировок состоят из трех этапов. На первом выделяются противоречивые пары объектов во всех парах кластеризованных ранжировок. На втором формируются кластеры итоговой кластеризованной ранжировки (т. е. классы эквивалентности – связные компоненты графов , соответствующих объединению попарных ядер противоречий). На третьем этапе эти кластеры (классы эквивалентности) упорядочиваются . Для установления порядка между кластерами произвольно выбирается один объект из первого кластера и второй – из второго, порядок между кластерами устанавливается такой же, какой имеет быть между выбранными объектами в любой из рассматриваемых кластеризованных ранжировок. Корректность подобного упорядочивания, т. е. его независимость от выбора той или иной пары объектов, вытекает из соответствующих теорем. Два объекта из разных кластеров согласующей кластеризованной ранжировки могут оказаться эквивалентными в одной из исходных кластеризованных ранжировок (т. е. находиться в одном кластере). В таком случае надо рассмотреть упорядоченность этих объектов в какой—либо другой из исходных кластеризованных ранжировок. Если же во всех исходных кластеризованных ранжировках два рассматриваемых объекта находились в одном кластере, то естественно считать (и это является уточнением к этапу 3 алгоритма), что они находятся в одном кластере и в согласующей кластеризованной ранжировке.
Результат согласования кластеризованных ранжировок А, В, С,… обозначим f(А, В, С,…). Тогда f(А, В) = [1<2<3<4<5<6<7<{8, 9}<10], f(А, С) = [{1,3}<{2, 4}<5<6<7<8<9<10], f(В, С) = [{1,2,3,4}<{5,6}<7<{8,9}<10], f(А, В, С) = f(В, С) = [{1,2,3,4} <{5,6}<7<{8, 9}<10]. В случае f(А, В) дополнительного изучения с целью упорядочения требуют только объекты 8 и 9. В случае f(В, С) объекты 1,2,3,4 объединились в один кластер, т. е. кластеризованные ранжировки оказались настолько противоречивыми, что процедура согласования не позволила провести достаточно полную декомпозицию задачи нахождения итогового мнения экспертов.
Рассмотрим некоторые свойства алгоритмов согласования. Пусть D = f(А, В, C,…). Если aядро противоречий для набора кластеризованных ранжировок является объединением таких ядер для всех пар рассматриваемых ранжировок . Построение согласующих кластеризованных ранжировок нацелено на выделение общего упорядочения в исходных кластеризованных ранжировках. Однако при этом некоторые общие свойства исходных кластеризованных ранжировок могут теряться. Так, при согласовании ранжировок В и С, рассмотренных выше, противоречия в упорядочении элементов 1 и 2 не было – в ранжировке В эти объекты входили в один кластер, т. е. 1 = 2, в то время как 1<2 в кластеризованной ранжировке С. Значит, при их отдельном рассмотрении можно принять упорядочение 1 < 2. Однако в f(В,C) они попали в один кластер, т. е. возможность их упорядочения исчезла. Это связано с поведением объекта 3, который «перескочил» в С на первое место и «увлек с собой в противоречие» пару (1, 2), образовав противоречивые пары и с 1, и с 2. Другими словами, связная компонента графа, соответствующего ядру противоречий, сама по себе не всегда является полным графом. Недостающие ребра при этом соответствуют парам типа (1, 2), которые сами по себе не являются противоречивыми, но «увлекаются в противоречие» другими парами.
Необходимость согласования кластеризованных ранжировок возникает, в частности, при разработке методики применения экспертных оценок в задачах экологического страхования и химической безопасности биосферы. Как уже говорилось, популярным является метод упорядочения по средним рангам, в котором итоговая ранжировка строится на основе средних арифметических рангов, выставленных отдельными экспертами. Однако из теории измерений известно, что более обоснованным является использование не средних арифметических, а медиан. Вместе с тем метод средних рангов весьма известен и широко применяется, так что просто отбросить его нецелесообразно. Поэтому было принято решение об одновременном применении обеих методов. Реализация этого решения потребовала разработки методики согласования двух указанных кластеризованных ранжировок.
Рассматриваемый метод согласования кластеризованных ранжировок построен в соответствии с методологией теории устойчивости , согласно которой результат обработки данных, инвариантный относительно метода обработки, соответствует реальности, а результат расчетов, зависящий от метода обработки, отражает субъективизм исследователя, а не объективные соотношения.
Читать дальшеИнтервал:
Закладка: