Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
- Название:Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
- Автор:
- Жанр:
- Издательство:Книжный дом «ЛИБРОКОМ»
- Год:2011
- ISBN:978-5-397-01371-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. краткое содержание
Вселенная полна удивительных тайн. Возможно, она скрывает от нас дополнительные измерения, разительно отличающиеся от всего, что может себе представить наш здравый смысл, взращенный в обычном трехмерном пространстве. И хотя с каждым годом мы узнаем все больше и больше о нашем мире, сегодня как никогда ранее мы осознаем, что для понимания истинной природы Вселенной нам необходимо сделать еще очень многое.
Лиза Рэндалл принадлежит к разряду тех ученых, которые сами, своими собственными исследованиями совершают прорывы и раздвигают границы современной науки, пытаясь найти ответы на фундаментальные вопросы, поставленные природой.
Л. Рэндалл проводит нас через потрясающий мир закрученных дополнительных измерений, лежащих, возможно, в основе нашей Вселенной, и показывает путь, следуя которому мы сможем убедиться в их существовании.
Книга «Закрученные пассажи» увлекает читателя в удивительное путешествие, проводя его через цепочку открытий от начала двадцатого века до настоящих дней, объясняя суть противоречий между теорией относительности, квантовой механикой и гравитацией, описывая достижения физики элементарных частиц, проблему иерархии, скейлинг, Великое объединение, суперсимметрию, дополнительные измерения, параллельные миры, эволюцию струнных теорий и многое другое.
В непринужденной и занимательной форме Лиза Рэндалл беседует с читателем, раскрывая таинства сложной науки и увлекательно объясняя загадки мириад миров, существующих, возможно, рядом с тем миром, в котором мы живем и который мы только начинаем постигать.
Книга вызовет несомненный интерес как у специалистов естественно-научных дисциплин, так и у широкого круга читателей.
Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Слабое взаимодействие нарушает зеркальную симметрию, действуя по-разному на левокиральные и правокиральные частицы, которые в физике принято называть просто левыми и правыми. Оказывается, что только левые частицы участвуют в слабых взаимодействиях. Например, левый электрон будет испытывать слабое взаимодействие, а электрон, вращающийся направо, — не будет. Эксперименты ясно показывают, что мир устроен именно так, но нет интуитивного механического объяснения, почему так должно быть.
Вообразите силу, которая может действовать только на вашу левую руку, но не на правую! Я только и могу сказать, что нарушение четности — поразительное, но хорошо установленное свойство слабых взаимодействий. Это одно из самых интригующих свойств Стандартной модели. Например, электроны, испускающиеся при распадах нейтронов, всегда левые. Слабые взаимодействия нарушают зеркальную симметрию, так что когда я перечисляю полный список элементарных частиц и возможных для них взаимодействий (рис. 52 на стр. 145), я должна отдельно указывать левые и правые частицы.
Нарушение четности, само по себе странное, является не единственным новым свойством слабых взаимодействий. Второе, в равной степени важное свойство заключается в том, что слабое взаимодействие может реально превращать частицу одного типа в частицу другого типа (сохраняя, тем не менее, полный электрический заряд). Например, когда нейтрон взаимодействует со слабым калибровочным бозоном, может возникнуть протон (рис. 49). Это сильно отличается от взаимодействия фотона, который никогда не сможет изменить полное число заряженных частиц любого конкретного типа (т. е. число частиц минус число античастиц), например, число электронов минус число позитронов. (Для сравнения, на рис. 50 показан фотон, взаимодействующий с электроном, который входит в область взаимодействия и покидает ее, а также схематическая диаграмма того типа, что мы использовали ранее.) Именно взаимодействие заряженного калибровочного бозона с нейтроном и протоном позволяет изолированному нейтрону распадаться, превращаясь в совершенно другие частицы.

Однако, поскольку нейтрон и протон имеют разные массы и несут разные заряды, нейтрон должен при распаде породить протон и другие частицы так, чтобы при этом сохранялись заряд, энергия и импульс. Оказывается, что при распаде нейтрона образуется не только протон, но также рождаются электрон и частица, называемая нейтрино [93] На самом деле, рождается антинейтрино, но сейчас это несущественно.
. Такой процесс, показанный на рис. 51, называется бета-распадом.
Когда бета-распад был впервые зарегистрирован, никто ничего не знал о нейтрино, которое участвует только в слабых взаимодействиях, но не в электромагнитных. В то же время детекторы частиц могут обнаружить только заряженные частицы или те частицы, которые выделяют энергию. Так как нейтрино не имеет электрического заряда и не распадается, оно остается невидимым для детекторов, так что никто не знал о его существовании.


Однако без нейтрино бета-распад выглядел так, как будто в нем не сохранялась энергия. Закон сохранения энергии является фундаментальным принципом всей физики. Он утверждает, что энергия не может ни возникать, ни уничтожаться, а может только переноситься из одного места в другое. Предположение о том, что в бета-распаде не сохраняется энергия, было возмутительным, однако многие уважаемые физики [94] Гипотезу о несохранении энергии в бета-распаде выдвинул не кто иной, как Нильс Бор. — Прим. пер.
, не имевшие представления о существовании нейтрино, были готовы согласиться с таким радикальным (и ошибочным) утверждением.
В 1930 году Вольфганг Паули предложил путь к научному спасению скептиков, который он сам назвал «отчаянной попыткой» — он предположил существование новой электрически нейтральной частицы [95] Точные слова Паули известны, так как они содержатся в его письме 1930 г., адресованном участникам важного научного совещания, на которое Паули не поехал, чтобы не пропустить праздничный бал.
. Идея Паули состояла в том, что нейтрино тайком крадет часть энергии, выделяющейся при распаде нейтрона. Тремя годами спустя Энрико Ферми дал солидное теоретическое обоснование существования «маленькой» нейтральной частицы, которую он назвал нейтрино [96] Нейтрино по-итал. означает «нейтрончик». — Прим. пер.
. Тем не менее гипотеза о существовании нейтрино представлялась в те времена настолько сомнительным выходом из положения, что ведущий научный журнал Nature отклонил статью Ферми, так как «она содержала размышления, слишком далекие от интересов читателя».
Однако идеи Паули и Ферми были правильными, и в наши дни физики полностью согласны с существованием нейтрино [97] В конце концов нейтрино были детектированы в 1956 г. Клайдом Коуэном и Фредом Райнесом на ядерном реакторе, что устранило все остававшиеся сомнения.
. На самом деле, мы знаем сейчас, что нас непрерывно пронизывают потоки нейтрино, рождающихся вместе с фотонами в ядерных реакциях на Солнце. Ежесекундно сквозь нас проходят триллионы солнечных нейтрино, но их взаимодействия столь слабы, что мы этого никогда не замечаем. Те нейтрино, в существовании которых мы твердо уверены, являются левыми; правые нейтрино либо не существуют, либо очень тяжелы, слишком тяжелы для того, чтобы рождаться, либо взаимодействуют очень слабо. Какая бы из гипотез ни оказалась правильной, правые нейтрино никогда не рождались на ускорителях, и мы их никогда не видели. Поскольку мы значительно более уверены в существовании левых, а не правых нейтрино, я показала на рис. 52, где приведены отдельно левые и правые частицы, только левые нейтрино.
Итак, мы знаем теперь, что слабые взаимодействия действуют только на левые частицы и могут менять тип частиц. Однако, чтобы по-настоящему понять слабые взаимодействия, нам нужна теория, предсказывающая взаимодействия слабых калибровочных бозонов, являющихся переносчиками слабых сил. Физики сразу же поняли, что построить такую теорию не так-то легко. Им потребовалось совершить ряд важных теоретических открытий, прежде чем действительно понять слабое взаимодействие и его следствия.
Читать дальшеИнтервал:
Закладка: