Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
- Название:Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
- Автор:
- Жанр:
- Издательство:Книжный дом «ЛИБРОКОМ»
- Год:2011
- ISBN:978-5-397-01371-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. краткое содержание
Вселенная полна удивительных тайн. Возможно, она скрывает от нас дополнительные измерения, разительно отличающиеся от всего, что может себе представить наш здравый смысл, взращенный в обычном трехмерном пространстве. И хотя с каждым годом мы узнаем все больше и больше о нашем мире, сегодня как никогда ранее мы осознаем, что для понимания истинной природы Вселенной нам необходимо сделать еще очень многое.
Лиза Рэндалл принадлежит к разряду тех ученых, которые сами, своими собственными исследованиями совершают прорывы и раздвигают границы современной науки, пытаясь найти ответы на фундаментальные вопросы, поставленные природой.
Л. Рэндалл проводит нас через потрясающий мир закрученных дополнительных измерений, лежащих, возможно, в основе нашей Вселенной, и показывает путь, следуя которому мы сможем убедиться в их существовании.
Книга «Закрученные пассажи» увлекает читателя в удивительное путешествие, проводя его через цепочку открытий от начала двадцатого века до настоящих дней, объясняя суть противоречий между теорией относительности, квантовой механикой и гравитацией, описывая достижения физики элементарных частиц, проблему иерархии, скейлинг, Великое объединение, суперсимметрию, дополнительные измерения, параллельные миры, эволюцию струнных теорий и многое другое.
В непринужденной и занимательной форме Лиза Рэндалл беседует с читателем, раскрывая таинства сложной науки и увлекательно объясняя загадки мириад миров, существующих, возможно, рядом с тем миром, в котором мы живем и который мы только начинаем постигать.
Книга вызовет несомненный интерес как у специалистов естественно-научных дисциплин, так и у широкого круга читателей.
Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В предыдущем разделе было рассказано о великой загадке — проблеме иерархии в ТВО. Но истинная проблема иерархии еще хуже. Хотя ТВО первая привлекла внимание физиков к проблеме иерархии, виртуальные частицы будут генерировать чересчур большие вклады в массу хиггсовской частицы даже в теории без частиц с массой ТВО. Даже Стандартная модель находится под подозрением.
Дело в том, что теория, содержащая Стандартную модель в комбинации с теорией тяготения, содержит два очень различающихся энергетических масштаба. Один — это масштаб энергии слабых взаимодействий, равный 250 ГэВ, т. е. энергия, при которой происходит нарушение электрослабой симметрии. Если энергия частиц меньше этого масштаба, становятся явными явления нарушения электрослабой симметрии, а слабые калибровочные бозоны и элементарные частицы имеют массу.
Другим уровнем энергии является планковский масштаб, который на шестнадцать порядков величины, т. е. в десять миллионов миллиардов (10 16) раз, больше, чем масштаб энергии слабых взаимодействий. Планковский масштаб энергий определяет интенсивность гравитационных взаимодействий: закон Ньютона утверждает, что интенсивность обратно пропорциональна квадрату этой энергии. И так как интенсивность тяготения мала, планковский масштаб масс (связанный с планковским масштабом энергии формулой E = mc 2) большой. Огромный планковский масштаб масс эквивалентен необычайно слабому тяготению.
До сих пор планковский масштаб масс не возникал в наших обсуждениях физики частиц, так как тяготение настолько мало, что в большинстве относящихся к физике частиц вычислений им можно было спокойно пренебречь. Но именно на этот вопрос хотят получить ответ физики-частичники: почему тяготение столь слабо, что им можно пренебречь в вычислениях по физике частиц? Другой способ сформулировать проблему иерархий состоит в том, чтобы спросить, почему планковский масштаб масс столь огромен, почему он в десять миллионов миллиардов раз больше, чем массы, относящиеся к масштабам физики частиц, которые меньше нескольких сотен ГэВ?
Чтобы дать вам пищу для сравнения, рассмотрим гравитационное притяжение между двумя частицами малой массы, например, между парой электронов. Гравитационное притяжение примерно в сто миллионов триллионов триллионов триллионов раз слабее электрического отталкивания между этими частицами. Два типа сил будут сравнимы, если электроны будут тяжелее в десять миллиардов триллионов раз. Это колоссальное число, оно сравнимо с тем, сколько раз вы сможете приложить остров Манхеттен непрерывной цепочкой на расстоянии, равном размеру видимой Вселенной.
Планковский масштаб масс неизмеримо больше, чем масса электрона и массы всех других известных нам частиц, и это указывает на то, что тяготение намного слабее других известных взаимодействий. Но почему должно быть такое огромное расхождение между интенсивностями большинства взаимодействий, или эквивалентно, почему планковский масштаб масс настолько огромен по сравнению с массами известных частиц?
Для специалистов по физике частиц трудно смириться с огромным отношением планковского масштаба масс к слабому масштабу масс, составляющим величину порядка десяти миллионов миллиардов. Это отношение больше, чем число минут, прошедших с момента Большого взрыва; оно в тысячу раз больше, чем число детских шариков, которые можно выложить от Земли до Солнца. Это число более чем в сто раз больше числа центов в бюджетном дефиците США! Почему же две массы, описывающие одну и ту же физическую систему, должны настолько различаться?
Если вы не специалист по физике частиц, вам может показаться, что все это не слишком существенная проблема, даже если эти числа очень велики. В конце концов, мы не обязаны объяснять все, и две массы могут быть разными без всяких особых причин. Но ситуация на самом деле намного хуже, чем кажется. Речь идет не только о существовании необъясненного огромного отношения масс. В следующем разделе мы увидим, что в рамках квантовой теории поля любая частица, взаимодействующая с хиггсовской частицей, может участвовать в виртуальном процессе, приводящем к росту массы хиггсовской частицы до значения порядка планковского масштаба масс 10 19ГэВ.
На самом деле, если бы вы попросили любого честного физика-частичника, знающего интенсивность гравитации, но ничего не знающего об измеренных массах слабых калибровочных бозонов, оценить массу хиггсовской частицы, используя квантовую теорию поля, он предсказал бы для хиггсовской частицы, и следовательно для слабых калибровочных бозонов, значения масс, в десять миллионов миллиардов раз большие, чем нужно. Иначе говоря, он заключил бы из своих вычислений, что отношение планковского масштаба масс и массы хиггсовской частицы (т. е. масштаба массы слабых взаимодействий, определяемого массой хиггсовской частицы) должно быть намного ближе к единице, чем к десяти миллионам миллиардов! Его оценка слабой шкалы масс была бы настолько близка к планковской шкале масс, что все частицы были бы черными дырами, а физика частиц в том виде, как мы ее знаем, просто не существовала бы. Хотя у него могло не быть априорных ожиданий как для значений масштаба массы слабых взаимодействий, так и планковского масштаба масс по отдельности, он мог бы использовать квантовую теорию поля для оценки отношения масс, и полностью бы ошибся. Ясно, что в этом месте существует огромное противоречие. В следующем разделе мы объясним его причину.
Причина, по которой планковский масштаб масс входит в вычисления квантовой теории поля, довольно тонкая. Как мы видели, планковский масштаб масс определяет интенсивность гравитационного взаимодействия. Согласно закону Ньютона, сила гравитации обратно пропорциональна квадрату планковского масштаба масс, и тот факт, что тяготение столь слабо, показывает, что планковский масштаб масс огромен.
В общем случае, делая предсказания в физике частиц, мы можем не учитывать гравитацию, так как ее влиянием на частицу массой порядка 250 ГэВ можно полностью пренебречь. Если действительно требуется принять во внимание гравитационные эффекты, их можно последовательно учесть, но обычно не в этом находится источник беспокойства. В последующих главах будут объяснены новые, совершенно другие сценарии, в которых гравитация сильна в высших измерениях, и ею нельзя пренебречь. Однако в обычной четырехмерной Стандартной модели пренебрежение гравитацией является стандартной и законной процедурой.
Но планковский масштаб масс играет и другую роль — это та максимальная масса, которую может иметь виртуальная частица в достоверных вычислениях в рамках квантовой теории поля. Если масса частиц превышает планковский масштаб, вычисления станут недостоверными, общая теория относительности не будет заслуживать доверия и должна будет быть заменена на более полную теорию, например на теорию струн.
Читать дальшеИнтервал:
Закладка: