Коллектив авторов - Современная космология: философские горизонты

Тут можно читать онлайн Коллектив авторов - Современная космология: философские горизонты - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Издательство «Канон+», год 2011. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Коллектив авторов - Современная космология: философские горизонты краткое содержание

Современная космология: философские горизонты - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга представляет собой исследование некоторых философских и эпистемологических проблем космологии. Проанализированы философские позиции классиков космологии XX века (А.А. Фридмана и др.), а также ряда выдающихся современных космологов. Космология вовсе не является одной из «иронических наук», какой ее иногда изображают. Физическая реальность в космологии проявляется как выраженная в языке науки фиксация результатов взаимодействия наблюдателя с исследуемым объектом (осуществляемым через средства и условия познания). Смысл этого понятия в контексте данного типа научной рациональности раскрывается истинной теорией. Показано, что космология, по сути, переходит от традиционных методов исследования к нетрадиционным, т. е. совершаются изменения в ее основаниях, навязываемые новыми типами исследуемых объектов. Отмечена необходимость коренного изменения смыслов традиционных понятий в космологии, таких как пространство, время, бесконечность. Проанализированы условия и границы их применимости в рамках новых космологических теорий. Особое внимание уделено новым фундаментальным понятиям, появившимся в космологии за последние годы: Мультиверс (Метавселенная), космологический вакуум, темная материя, темная энергия, ускоренное расширение Вселенной и др. По некоторым проблемам, находящимся на переднем крае современной космологии, ведется дискуссия между авторами книги. Сделана попытка показать эвристическую роль философии в осмыслении указанных проблем.

Книга рассчитана на философов, космологов и всех, интересующихся философскими проблемами современной науки.

Современная космология: философские горизонты - читать онлайн бесплатно полную версию (весь текст целиком)

Современная космология: философские горизонты - читать книгу онлайн бесплатно, автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В общем случае анизотропной неоднородной Вселенной понятие пространства не имеет однозначного смысла. Так, если система отсчёта сопутствует вращающейся материи, то её пространство не может быть голономным. (В такой системе отсчёта теряет смысл также понятие единого геометрического времени, потому что отсутствует единый способ синхронизации событий). В случае же фридмановских моделей всегда существует (сопутствующая веществу) система отсчёта с голономным пространством, и можно ставить вопрос о величине его объёма, решаемый вычислением тройного интеграла по пространственным координатам [416] Раз мы говорим об объёме трёхмерного пространства, то, следовательно, под его бесконечностью мы понимаем так называемую «метрическую бесконечность» (см. классификацию типов бесконечности, данную Г. Нааном. См. Наан Г.И. Понятие бесконечности в математике и космологии // Бесконечность и Вселенная. М., 1969. .

Известно, что космология Фридмана не даёт однозначного ответа на вопрос о конечности или бесконечности пространства: она допускает как замкнутые модели (при k = + 1, где k — параметр пространственной кривизны), так и открытые (при k = 0 и k = -1). Причём конечность и бесконечность пространства рассматриваются как взаимоисключающие возможности. Таким образом, космология никак не разрешала вопрос, конечна или бесконечна Вселенная в пространстве. Но, как замечает А.Л. Зельманов, это происходило только потому, что сам вопрос о конечности и бесконечности пространства решался по отношению к одной, физически преимущественной системе отсчёта — сопутствующей веществу. Тем самым обходился вопрос о возможной зависимости конечности или бесконечности пространства от движения системы отсчёта. Между тем, в теории относительности инвариантны, то есть независимы от выбора движения системы отсчёта, лишь свойства 4-мерного мира, но не его расщепление на пространство и время. «В таком случае, — спрашивает А.Л. Зельманов, — не может ли зависимость свойств рассматриваемых порознь пространства и времени от движения системы отсчёта простираться так далеко, чтобы затрагивать конечность или бесконечность пространства? [417] Зельманов А.Л. Многообразие материального мира и проблема бесконечности Вселенной // Бесконечность и Вселенная. М., 1969. С. 314. ».

Чтобы получить ответ, надо было рассмотреть вопрос в чистом виде, т. е. отрешиться от привилегированных систем отсчёта — избавиться от сопутствия их материи, а проще всего — совсем изгнать из фридмановских моделей материю. ОТО допускает такие модели (называемые пустыми), ибо в ней искривленное пространство-время может существовать автономно, без порождающей кривизну материи. Для таких моделей А.Л. Зельманов и получил свой замечательный результат [418] Зельманов А.Л. Докл. АН СССР. Т. 124. № 5. 1959. С. 1030. : бесконечное пространство одной системы отсчёта может оказаться конечным с точки зрения другой системы отсчёта, движущейся относительно неё. Наиболее выразительным этот результат оказался для 4-мерных миров де Ситтера — пустых миров при Λ > О (Λ — космологическая постоянная; это космическое поле сейчас считается ответственным за наблюдаемое ускорение расширения Вселенной). А.Л. Зельманов рассмотрел три типа таких миров, 4-мерная метрика которых задана в системах отсчёта Ланцоша («мир Ланцоша»), Леметра и Робертсона (миры Леметра и Робертсона). Каждый из миров Леметра и Робертсона в своей системе обладает бесконечным пространством. Но из координатной связи этих миров с миром Ланцоша следует, что эти миры составляют лишь часть мира Ланцоша, в системе которого они, однако, имеют конечные пространства.

Для случая непустых фридмановских моделей результат А.Л. Зельманова принципиально остаётся тем же, поскольку для них сохраняется понятие пространства. Ставить же вопрос о конечности и бесконечности пространства анизотропной неоднородной Вселенной, вообще говоря, невозможно, потому что теряет смысл сам объект, пространство. Вывод таков: в тех случаях, когда пространственный объём Вселенной существует как понятие, то его конечность или бесконечность относительна, т. е. зависит от наблюдателя.

Зависимость рассматриваемых по отдельности пространства и времени от движения системы отсчёта естественным образом порождает и другой вопрос: не простирается ли она столь далеко, чтобы затрагивать конечность и бесконечность времени? И в этом случае вопрос также имеет смысл лишь там, где само понятие времени имеет смысл. Так как Вселенная как целое не могла возникнуть во времени (геометрическом), вопрос можно ставить лишь для отдельных её объектов (подсистем). Для отдельного объекта всегда можно ввести преимущественную сопутствующую ему систему отсчёта, геометрическое время которой называется собственным временем объекта. И тут оказалось, что существуют (в геометрическом времени) объекты, для которых время протекания одного и того же процесса в одной системе отсчёта конечно, а в другой — бесконечно. Объект такого рода был теоретически предсказан в работе Оппенгеймера и Снайдера ещё в 1939 году [419] Oppenheimer J., Snyder H., Phys. Rev. V. 56. 1939. P. 455. . Это сфера из идеальной жидкости, неограниченно сжимающаяся (коллапсирующая) под действием собственных гравитационных сил. Неограниченное сжатие приводит к тому, что эта сфера за конечный промежуток собственного времени достигает размеров собственного гравитационного радиуса (r g) и, переходя далее внутрь сферы этого радиуса («сингулярной сферы Шварцшильда»), сжимается до точечного состояния. Вместе с тем, в статической системе отсчёта внешнего наблюдателя одно лишь время приближения этой сферы к гравитационному радиусу бесконечно. Таким образом, в бесконечное время статической системы отсчёта укладывается лишь часть процесса сжатия сферы. Моменту достижения радиуса r = r gотвечает время t = ∞ внешнего наблюдателя. Никаких логических противоречий в этом нет: это — относительность хода геометрического времени в своём крайнем выражении.

Таким образом, с точки зрения удалённого наблюдателя, гравитационный коллапс приводит к возникновению как бы навек «застывшего» тела, от которого не приходят в окружающее пространство никакие сигналы. Оно «застыло» не потому, что находится в равновесии (ибо равновесия нет), но потому, что, с точки зрения внешнего наблюдателя, на сингулярной сфере «застыло» (остановилось) время. Действительно, в системе отсчёта внешнего наблюдателя собственное время наблюдателя, пересекающего сингулярную сферу Шварцшильда, выражается величиной

τ = ∫√g 00dt = ∫√(1 — r/r g)dt

откуда видно, что на сингулярной сфере (r = r g) собственное время обращается в нуль.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Современная космология: философские горизонты отзывы


Отзывы читателей о книге Современная космология: философские горизонты, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x