Коллектив авторов - Современная космология: философские горизонты
- Название:Современная космология: философские горизонты
- Автор:
- Жанр:
- Издательство:Издательство «Канон+»
- Год:2011
- Город:Москва
- ISBN:978-5-88373-257-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Современная космология: философские горизонты краткое содержание
Книга представляет собой исследование некоторых философских и эпистемологических проблем космологии. Проанализированы философские позиции классиков космологии XX века (А.А. Фридмана и др.), а также ряда выдающихся современных космологов. Космология вовсе не является одной из «иронических наук», какой ее иногда изображают. Физическая реальность в космологии проявляется как выраженная в языке науки фиксация результатов взаимодействия наблюдателя с исследуемым объектом (осуществляемым через средства и условия познания). Смысл этого понятия в контексте данного типа научной рациональности раскрывается истинной теорией. Показано, что космология, по сути, переходит от традиционных методов исследования к нетрадиционным, т. е. совершаются изменения в ее основаниях, навязываемые новыми типами исследуемых объектов. Отмечена необходимость коренного изменения смыслов традиционных понятий в космологии, таких как пространство, время, бесконечность. Проанализированы условия и границы их применимости в рамках новых космологических теорий. Особое внимание уделено новым фундаментальным понятиям, появившимся в космологии за последние годы: Мультиверс (Метавселенная), космологический вакуум, темная материя, темная энергия, ускоренное расширение Вселенной и др. По некоторым проблемам, находящимся на переднем крае современной космологии, ведется дискуссия между авторами книги. Сделана попытка показать эвристическую роль философии в осмыслении указанных проблем.
Книга рассчитана на философов, космологов и всех, интересующихся философскими проблемами современной науки.
Современная космология: философские горизонты - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Таким образом, в космологических моделях ФРУ можно говорить о размере только закрытой Вселенной. Строго говоря, точно неизвестно, является ли наша Вселенная открытой, плоской, или закрытой с точки зрения космологии ФРУ. Может быть, если она закрытая, то все-таки можно говорить об очень маленьком начальном размере в момент Большого взрыва? Нет, в момент, когда Вселенная перешла в горячее состояние, что и следует отождествлять с реальным началом горячего Большого взрыва нашей Вселенной, она уже была практически плоской, т. е. радиус соответствующей замкнутой Вселенной должен быть огромен, огромны и ее размеры (что и подтверждается оценкой размера горизонта, приведенной выше). Даже если наша Вселенная замкнута, на стадии горячего взрыва она никогда не имела малый размер.
Откуда же берутся утверждения, постоянно встречающиеся в популярной (и не очень) литературе, что «Вселенная возникла из точки»? Это утверждение может иметь два различных источника. Во-первых, оно может быть понято как метафора, в том смысле, что любые два объекта, между которыми сейчас расстояние конечно или даже велико, когда-то были крайне близки (помещались «в одной точке»). Во-вторых, утверждение может относиться не к горячему Большому взрыву, а к начальной стадии инфляции из квантовой флуктуации поля инфлатона (которая, в общем случае, не обязана присутствовать в космологическом сценарии: ее нет в бранных сценариях).
О малых начальных размерах Вселенной действительно можно говорить, если подразумевать под ними не ее размер в момент горячего Большого взрыва или после него, но размер раздувающегося пузыря нашей локальной Вселенной (или какой-нибудь другой), в рамках инфляционной космологии, имея в виду период от возникновения квантовой флуктуации ДО момента горячего Большого взрыва. Здесь размер пузыря действительно может (хотя и не обязан) меняться от микроскопического в момент начала раздувания, до чудовищного в момент разогрева Вселенной в Большом взрыве (он может пройти и через размер атома, который, однако, в этом сценарии ничем не выделен, и не означает перехода от квантовой стадии эволюции к классической). Если уж говорить о малом начальном размере Вселенной, то надо четко обозначать, что это понятие, во-первых, имеет отношение к истории Вселенной ДО горячего Большого взрыва — к квантовому рождению и последующей инфляционной стадии; во-вторых, надо понимать, что вопрос о размере начальной квантовой флуктуации пока неясен; и, в-третьих, не следует забывать, что есть космологические сценарии (бранные), в которых вообще нет никакого квантового рождения Вселенной из флуктуации и нет малых размеров чего-либо, связанного с этим событием. Часто все эти тонкости опускаются, что вводит читателей в заблуждение.
** «Этот вывод меняет представление о сингулярном состоянии Вселенной непосредственно в момент Большого взрыва».
Инфляционная космология, как и бранная, вообще говоря, не содержит представлений о сингулярном состоянии Вселенной ни в момент горячего Большого взрыва, ни когда бы то ни было до него. Никакой неизбежной сингулярности в современной, но неквантово-гравитационной, космологии нет. И в инфляционной, и в бранной космологии Вселенная в момент горячего взрыва очень велика и обладает конечной плотностью и температурой (которая в инфляционной космологии определяется плотностью энергии поля инфлатона на момент фазового перехода). Начальная сингулярность инфляционного периода (до горячего Большого взрыва! см. предыдущее примечание) в большинстве инфляционных сценариев явно устраняется началом расширения Вселенной из предполагаемой квантовой флуктуации скалярного поля инфлатона, которая имеет конечный размер, и для описания которой, вообще говоря, квантовая гравитация может и не потребоваться (это обычная квантовая флуктуация поля вроде той, которая определяет наблюдаемый эффект Казимира). По этому поводу А. Линде написал 1: «В этом отношении инфляционная космология обладает очень важным преимуществом: она работает практически независимо от решения проблемы сингулярности. Она одинаково хорошо работает после сингулярности, после отскока, или после квантового рождения вселенной. Этот факт особенно ясен в сценарии вечной инфляции: вечная инфляция делает процессы, которые происходят в области большого взрыва
’ A. Linde. Inflationary Cosmology // Lect.Notes Phys. V. 738(2008). P. 1–54 (arXiv:0705.0164v2 [hep-th]).
практически не имеющими отношения к последующей эволюции вселенной» {перевод с англ. А.П.). Заметим, что в цитированном отрывке А. Линде понимает под большим взрывом не горячий Большой взрыв, и даже не начало инфляции нашей Вселенной, но начало первого в Мультиверсе инфляционного расширения (если таковое вообще было, по поводу чего Линде в цитированном обзоре высказывает сомнение), с которого все началось, или даже начало самого Мультиверса — начало процесса вечной инфляции. То, что есть необходимость в начале Мультиверса — тоже, как считает Линде, сомнительно.
Представление о сингулярности содержит классическая фридмановская космология (и другие классические космологии), что делает классические решения расходящимися. В этом состоит классическая проблема сингулярности в космологии. Теория струн вместе с ПТКГ показывают, что даже из идеализированного классического сценария (который игнорирует проблему происхождения горячего Большого взрыва) можно устранить сингулярность благодаря эффектам квантовой гравитации. Точное утверждение состоит в том, что из-за эффектов квантовой гравитации перестает работать теорема Пенроуза о сингулярности. Целью анализа космологической сингулярности в квантовых теориях гравитации является не столько вопрос о том, как на самом деле Вселенная решает проблему сингулярности, сколько более формальный вопрос о том, не являются ли решения ОТО противоречивыми, и является ли сингулярность в решениях ОТО неизбежной. В литературе иногда перемешивается одно с другим (устранение сингулярности в инфляционном сценарии и в космологии вообще и устранение сингулярности из классических решений ОТО), что порождает путаницу. Эта путаница присутствует, например, у Б. Грина в «Элегантной Вселенной» [265] Б. Грин. Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории. М.: Едиториал УРСС, 2005.
: «…для исключения бесконечной температуры и плотности энергии, которые возникают в стандартной и инфляционной модели….» (стр. 234). В действительности, в стандартной модели бесконечная температура и плотность энергии возникают, а в инфляционной — нет. Этой неточности уже нет в новой книге Б. Грина «Ткань космоса» [266] Б. Грин. Ткань космоса. Пространство, время и текстура реальности. М., 2009.
.
Интервал:
Закладка: