Коллектив авторов - Современная космология: философские горизонты
- Название:Современная космология: философские горизонты
- Автор:
- Жанр:
- Издательство:Издательство «Канон+»
- Год:2011
- Город:Москва
- ISBN:978-5-88373-257-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Современная космология: философские горизонты краткое содержание
Книга представляет собой исследование некоторых философских и эпистемологических проблем космологии. Проанализированы философские позиции классиков космологии XX века (А.А. Фридмана и др.), а также ряда выдающихся современных космологов. Космология вовсе не является одной из «иронических наук», какой ее иногда изображают. Физическая реальность в космологии проявляется как выраженная в языке науки фиксация результатов взаимодействия наблюдателя с исследуемым объектом (осуществляемым через средства и условия познания). Смысл этого понятия в контексте данного типа научной рациональности раскрывается истинной теорией. Показано, что космология, по сути, переходит от традиционных методов исследования к нетрадиционным, т. е. совершаются изменения в ее основаниях, навязываемые новыми типами исследуемых объектов. Отмечена необходимость коренного изменения смыслов традиционных понятий в космологии, таких как пространство, время, бесконечность. Проанализированы условия и границы их применимости в рамках новых космологических теорий. Особое внимание уделено новым фундаментальным понятиям, появившимся в космологии за последние годы: Мультиверс (Метавселенная), космологический вакуум, темная материя, темная энергия, ускоренное расширение Вселенной и др. По некоторым проблемам, находящимся на переднем крае современной космологии, ведется дискуссия между авторами книги. Сделана попытка показать эвристическую роль философии в осмыслении указанных проблем.
Книга рассчитана на философов, космологов и всех, интересующихся философскими проблемами современной науки.
Современная космология: философские горизонты - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Из этого, между прочим, видно, что и то решение проблем бесконечности, которое дается теорией множеств, не может быть окончательным. Обратимся опять к тонкому знатоку глубоких проблем математики Г. Вейлю. «В системе математики, — пишет он, — имеются два обнаженных пункта, в которых она, может быть, соприкасается со сферой непостижимого. Это именно принцип построения ряда натуральных чисел и понятие континуума. Все остальное… представляет собой задачу формальной логики, не таящую уже в себе никаких трудностей и загадок… Теория множеств надеется и в этих двух пунктах возвести прочную плотину и запрудить поток бесконечного, грозящий затопить в своем течении наш дух [373] Кузнецов Б.Г. Сб. Эйнштейн и развитие физико-математической мысли. М., 1962. С. 195 и сл.
». Такая плотина еще не возведена и похоже, что не может быть возведена средствами теории множеств в существующем виде.
Каков, однако, прообраз потенциальной бесконечности в космологии? В общем виде ответ на этот вопрос, видимо, может быть примерно таков. Понятие актуальной бесконечности в математике идеализирует действительное положение вещей в том смысле, что рассматривает их как некую готовую, заданную, устойчивую совокупность. Но релятивистская космология установила нестационарность Вселенной (ее составных частей). Поэтому свойства Вселенной, в том числе и пространственно-временные, представляют устойчивое в изменении, и могут существовать лишь как результат многообразных процессов, нарушающих устойчивость. Потенциальная бесконечность является отражением этой стороны дела.
2.8. Метаматематическая бесконечность. Этим намеренно неоднозначным термином я хочу привлечь внимание к возможности дальнейшего обобщения понятия бесконечности в различных направлениях, которые по-разному выводят за пределы представлений, существующих в современной математике.
Во-первых, мыслимы обобщения основного для современной релятивистской космологии аспекта бесконечности — метрического — и усложнение основного понятия метрической геометрии — понятия кривизны. Одно из простейших предположений этого рода — наличие у пространства или пространства-времени второй кривизны (спиральности).
Во-вторых, не исключена возможность дальнейшего обобщения самой геометрии в смысле обнаружения у пространства-времени свойств, еще более устойчивых, чем топологические. При этом может претерпеть изменение и наиболее общее в геометрии понимание бесконечности — топологическое.
В-третьих, возможны изменения, которые явились бы метаматематическими в буквальном значении этого слова, т. е. выводящими за теоретико-множественные основы современной математики. Не только вся релятивистская теория тяготения, из которой исходит современная космология, но и теория поля вообще и вся теоретическая физика в целом строится на том самом теоретико-множественном понимании континуума, которое, по словам Вейля, является одним из двух обнаженных пунктов современной математики. Центральный пункт этого понимания — представление о точечном множестве, множестве, в котором можно с помощью понятия предельных точек подмножеств ввести понятие непрерывности. Представление об пространственно-временном континууме как реализации математического континуума (актуально бесконечного) может подвергнуться ревизии в различных направлениях, мыслимо, например, что макроскопическая непрерывность (пространства, времени, движения, существования частиц) имеет статистический характер, что в основе ее лежит дискретность пространства, времени, траектории, самого бытия частиц.
Выше (2.4.3) уже говорилось о связи между проблемами топологии и причинности (случайности). Связь эта, по-видимому, идет еще дальше, проникая в теоретико-множественное понимание континуума. Современная математика, возможно, нащупывает эту связь в исследованиях, связанных с мерой множества (в смысле Лебега). Послед-няя представляет собой интересный пример меры в общем (философском) смысле; в то же время она позволяет оперировать с такими множествами (абстрактными пространствами), которые плохо поддаются иным подходам; вместе с тем она является одним из центральных понятий в современной теории вероятностей, т. е. в науке о случайном (наука — отнюдь не враг случайностей!).
И все же наибольший «практический» интерес представляют не те метаматематические аспекты бесконечности, которые связаны с буквальным пониманием этого прилагательного, а с более распространенным, включающим в метаматематику те разделы математики, для которых еще не найдено (и, возможно, не будет найдено) место в старых, классических ее разделах (теория информации, теория игр, конечная, или дискретная математика, математическая логика и т. д.). Особенно важен логический аспект проблемы бесконечности и, соответственно, изучение этой проблемы средствами математической логики. Несмотря на то, что этот аспект весьма важен и для космологии, ему, по-видимому, уделялось очень немного внимания. Это является следствием характерной для нашего времени дифференциации науки, малой осведомленности специалистов о действительном положении дел за пределами узкой области своих интересов. Физики часто склонны думать, что вся сложность проблемы бесконечности Вселенной в том, что наблюдательные данные пока слишком ненадежны, что же касается математической, тем более — логической стороны дела, то, слава богу, здесь все ясно. Математики, наоборот, склонны думать, что хоть в физике (космологии) все достаточно ясно, поскольку все решается наблюдением, экспериментом. Специалисты по логике, возможно, полагают, что трудности есть и в математике, и в физике, но не логического порядка.
Между тем, пикантность ситуации состоит прежде всего в том, что в утверждениях типа «Космология доказывает, что Вселенная бесконечна (конечна)» чаще всего остается совершенно неясным, что понимается под космологи-ей, под доказательством, под Вселенной и под бесконечностью. Действительно, уже одно обилие прилагательных (астрономическая, физическая, наблюдательная, теоретическая и т. п. космология) свидетельствует о том, что применяющие их авторы сознают неопределенность термина «космология»; обычно, однако, эти прилагательные тоже ничего не проясняют, кроме желания автора подчеркнуть независимость своих построений от философии (и, возможно, логики). «Доказывает» в данном контексте тоже может совершенно ничего не доказывать, ибо из многовековой истории, попыток доказать пятый постулат Евклида хорошо известно, насколько призрачными становятся даже геометрические доказательства, стоит им только соприкоснуться с бесконечным. «Вселенная» в одной только физико-математической литературе употребляется в пяти-шести существенно различных значениях, причем на протяжении одной страницы или даже одной фразы может происходить переход к другому значению. Наконец, как мы видели, существует по крайней мере десяток разных типов «бесконечности». Во всем утверждении «Космология доказывает, что Вселенная бесконечна (конечна)» остается единственное недвусмысленное слово — служебное слово «что». Этот пример достаточно красноречиво говорит о необходимости хотя бы минимального уточнения логического статута основных понятий, связанных с бесконечностью.
Читать дальшеИнтервал:
Закладка: