Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы

Тут можно читать онлайн Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Книжный дом «ЛИБРОКОМ», год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Марк Перельман - Наблюдения и озарения или Как физики выявляют законы природы краткое содержание

Наблюдения и озарения или Как физики выявляют законы природы - описание и краткое содержание, автор Марк Перельман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.

Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.

Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.

Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.

«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.

Итак, вперед — совершать открытия вместе с гениями!

Наблюдения и озарения или Как физики выявляют законы природы - читать онлайн бесплатно полную версию (весь текст целиком)

Наблюдения и озарения или Как физики выявляют законы природы - читать книгу онлайн бесплатно, автор Марк Перельман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Различие между физикой и математикой проявляется еще в том, что мы говорим: «физик открыл такое-то явление», но «математик придумал или изобрел такой-то прием или теорию».

Так-то это так, а все же физику-теоретику приходится изучать и применять математику: во-первых, перевод с обычного языка на математический позволяет резко сократить и унифицировать описание явлений, тем более — ход их количественных изменений. Так, колоссальный объем экспериментальных наблюдений Фарадея, плюс еще больший объем всего, что было сделано до него, Максвелл свел всего к четырем уравнениям. Во-вторых, как уже отмечалось, хотя бы в связи с электродинамикой Максвелла, уравнения нередко оказываются «умнее» тех, кто их вывел — они приводят к совершенно нежданным результатам, и мы еще не раз будем иметь повод об этом сказать.

Степень владения математикой у физиков-теоретиков различна: бывают виртуозы расчетов — А. Зоммерфельд, Г. Бете, Л. Д. Ландау [8] Вспоминается такая история. Двое моих приятелей, молодые, но уже зарекомендовавшие себя теоретики, чуть ли не год безуспешно возились с каким-то уравнением. Наконец, директор их института, друживший с Ландау, не выдержал и понес ему листок с уравнением: Ландау долго отказывался на него взглянуть (любимая фраза в таких случаях: «Вас много, а я один!»), но все же взял и через пару часов, вернувшись от зубного врача, отдал тот же листок с решением на обороте — он сказал, что решал, пока ему сверлили зуб, чтобы отвлечься от боли… Один из приятелей впал после этого в глубокую депрессию — такой удар по самолюбию! , Дж. Швингер; бывают физики, старающиеся ограничиться минимальными средствами, — Н. Бор, Э. Ферми, а иногда в физику с успехом входят математики — Дж. фон Нейман, С.Улам [9] С. М. Улам — выдающийся польско-американский математик, написал любопытную книгу воспоминаний: Улам С. М. Приключения математика. М.: РХД, 2001. , Н.Н. Боголюбов (вспоминаем только ученых XX в.). Некоторые физики считают, что математику для физиков нужно вообще излагать иным, чем для математиков, образом — такие курсы математики писали X. А. Лорентц, Я.Б. Зельдович, Ли Цзян-дао (о двух последних — ниже), иногда в книги и даже статьи по физике вставляются разделы по менее знакомым для читателей вопросам математики.

А о весьма противоречивом отношении к математике физиков блистательно - фото 6

А о весьма противоречивом отношении к математике физиков, блистательно владевших ее методами, говорят их популярные афоризмы:

«Физические законы должны обладать математической красотой» — П. Дирак,

«Элегантность должна быть оставлена портным» — В. Паули.

«В тех случаях, когда физическая сущность вопроса не ясна, не следует искать у математики путеводной нити для ее выяснения» — Я. И. Френкель,

«Математическое требование высшей точности не очень полезно в физике» — Р. Фейнман.

Вкусы и установки у них, как видим, индивидуальны — общего рецепта нет.

Иное мнение у многих математиков. Великий математик Давид Гильберт любил повторять: «Физика слишком трудна для физиков, за нее должны взяться математики». Он даже включил в свой перечень самых острых проблем математики на XX в. задачу аксиоматизации физики и сам занялся проблемами общей теории относительности (успехи подключения математиков к этим проблемам не дали радикальных результатов).

А теперь, чтобы показать всю сложность и неоднозначность проблемы взаимосвязи физики и математики, такой пример. В 1982 г. Нобелевской премии был удостоен Кеннет Вильсон (р. 1936) за теорию фазовых переходов второго рода, причем впервые премия была присуждена за работу, которая не содержала новых физических идей, а носила — во всяком случае внешне — чисто математический характер.

Поясним смысл его работ, для этого нужно некоторое предисловие. Фазовыми переходами первого рода являются переходы, обусловленные поглощением или выделением теплоты, изменением удельной теплоемкости и других термических характеристик тела (например, конденсация пара, кристаллизация и т. п.). Фазовые переходы второго рода связаны с изменением энтропии, т. е., в основном, внутреннего порядка, симметрии: например, переход от ферромагнитного состояния железа к парамагнитному (он происходит при достижении так называемой температуры Кюри, при которой магниты сразу размагничиваются), сюда же относятся переходы в сверхпроводящее и сверхтекучее состояния, о которых мы еще будем говорить (такая классификация фазовых переходов не является абсолютно строгой, фактически существуют и промежуточные виды переходов и т. д.).

Фазовые переходы второго рода, определяемые критическими показателями температуры, давления, и напряженности поля, характеризуются такой особенностью: закон изменения этих величин при подходе к критической точке один и тот же, вне зависимости от того, какой параметр рассматривается, а все попытки расчетов давали только расходящиеся (бесконечные, лишенные физического смысла) значения.

Вильсон подошел к этой проблеме с неожиданной стороны. Он рассчитал эти величины не в обычном трехмерном пространстве или в виде модели в двухмерном или одномерном пространстве, а в пространстве нецелой размерности. Математически можно, например, рассчитать интегралы в пространстве размерности 2,745. Что это такое? — Не знаю.

Но зато, я знаю иное: Вильсон провел расчеты термодинамических величин в пространстве размерности (3 минус малая величина), а по окончании всех расчетов устремил эту самую малую величину к нулю — осталось, как и должно быть, пространство трех измерений и… правильные значения всех величин [10] Автору удалось получить правильные наборы этих величин по-иному, используя понятия длительности взаимодействий (2007). !

Такие геометрии нецелых размерностей (они называются фрактальными) еще раньше рассматривались математиками. Сейчас они находят интересные применения в теории хаоса: в физике, экономике, социологии и т. д.

А всегда ли можно доверять математике и математикам? В 1931 г. знаменитый логик и математик Курт Гедель (1906–1978) показал, что всякая логическая система аксиом в результате развития теории обязательно приводит к таким теоремам, которые противоречат исходному набору аксиом, т. е. приводит к внутренним противоречиям. Заранее установить, когда это произойдет (и подложить мягкую подушку), по-видимому невозможно — остается проверять на опыте… Иными словами, Гедель показал, что одна лишь логика не может дать ответ на все вопросы — необходимо вмешательство человеческой интуиции, и в этом смысле математика остается искусством.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Марк Перельман читать все книги автора по порядку

Марк Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Наблюдения и озарения или Как физики выявляют законы природы отзывы


Отзывы читателей о книге Наблюдения и озарения или Как физики выявляют законы природы, автор: Марк Перельман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x