Алекс Виленкин - Мир многих миров. Физики в поисках иных вселенных.
- Название:Мир многих миров. Физики в поисках иных вселенных.
- Автор:
- Жанр:
- Издательство:ООО Издательство Астрель © 2006 by Alex Vilenkin all rights reserved
- Год:2009
- Город:Москва
- ISBN:978-5-271-25401-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алекс Виленкин - Мир многих миров. Физики в поисках иных вселенных. краткое содержание
Все мы живем в остатках огромного взрыва, случившегося около 14 миллиардов лет тому назад и положившего начало нашей Вселенной. Однако что предшествовало этому грандиозному событию? И какова вероятность того, что помимо нашего мира где-то существуют другие? В своей популярно написанной книге физик, профессор университета Тафтс (США) Алекс Виленкин знакомит читателя с последними научными достижениями в сфере космологии и излагает собственную теорию, доказывающую возможность — и, более того, вероятность — существования бесчисленных параллельных вселенных. Выводы из его гипотезы ошеломляют: за границами нашего мира раскинулось множество других миров, похожих на наш или принципиально иных, населенных невообразимыми созданиями или существами, неотличимыми от людей. Идеи Виленкина оказались настолько ясными, убедительными и в то же время революционными, что в одночасье превратили скромного кабинетного ученого в звезду популярных ток-шоу, а его книгу — в международный бестселлер, получивший колоссальный общественный резонанс.
Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда — развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе — сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" — издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу: WWW.DYNASTYFDN.RU
Мир многих миров. Физики в поисках иных вселенных. - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Даже если мы не интересуемся скоростью частицы, рассуждения Гейзенберга указывают, что для наращивания точности локализации частицы нам потребуется все больше и больше энергии. В любой реальной физической системе с ограниченной энергией точность определения положения тоже ограничена. Так что мы не можем идеально точно указать положение частиц, а вынуждены использовать крупнозернистое описание. Предположим, что объем нашего О-региона разделен на кубические ячейки размером, скажем, 1 сантиметр каждая. Крупнозернистое описание состояния заключается в указании клеток, занимаемых каждой частицей в регионе. Более точное описание получится, если мы уменьшим размер клеток. Однако для такого уточнения есть предел, поскольку энергетическая цена локализации частиц в маленьких ячейках в конце концов превзойдет всю доступную энергию О-региона.
Очевидно, что число способов, которыми можно распределить конечное число частиц по конечному числу клеток, тоже конечно. Выходит, материя, наполняющая наш О-регион, может находиться лишь в конечном числе различных состояний. Очень грубо это число можно оценить как 10 в степени 1090 , то есть единица, за которой следует 10 90 нулей — много больше, чем поместилось бы на страницах этой книги. Это фантастически огромное число, но нам важно, что оно все же конечное.
Пока все идет неплохо. Есть, правда, одно затруднение: далекие регионы могут содержать больше материи и энергии чем наш. Редкие крупные квантовые флуктуации во время инфляции иногда порождают сильно переуплотненные регионы полные высокоэнергичных частиц. С ростом их энергии число возможных состояний тоже возрастает. Но лишь до некоторого предела. Если вкачивать в регион все больше и больше энергии, его гравитация станет усиливаться, и в конечном счете он целиком превратится в черную дыру. Таким образом, гравитация ставит абсолютный верхний предел числу возможных состояний региона данного размера независимо от его наполнения.
Точное значение этого предела еще предстоит установить. Впервые о нем заговорил Якоб Бекенштейн (Jacob Bekenstein) в 1980-х годах, а потом он появился в работах по суперструнам Герард'та Хофта (Gerard't Hooft), Леонарда Сасскинда (Leonard Susskind) и других. В работе Бекенштейна предполагалось, что максимальное число состояний в регионе зависит только от его границ. Для О-региона получалось значение 10 в степени 10 123 (1 с более чем гуголом нулей!) [65] Это ограничение неприложимо к областям, превосходящим размеры космического горизонта. Предполагается, что на пределе оно применимо к О-региону, который по размерам совпадает с горизонтом.
.
Подсчет историй
Но конечным является не только число различных состояний О-региона — то же самое можно сказать и о числе его возможных историй.
История описывается цепочкой состояний в последовательные моменты времени. Такие понятия, как история, по-видимому, очень сильно различаются в квантовой и классической физике. В квантовом мире будущее не определяется однозначно прошлым. Одни и те же начальные условия могут вести множеству разных исходов, и мы можем подсчитывать лишь их вероятности. В результате диапазон возможностей значительно расширяется. Но квантовая неопределенность вновь не позволяет нам различить истории, которые слишком похожи одна на другую.
Квантовая частица, как правило, не имеет однозначно определенной истории. Это неудивительно, поскольку, как мы знаем, у нее нет и четко определенного положения. Но неопределенность не означает, что мы просто не знаем, по какому пути движется частица от своего источника к детектору. Ситуация куда удивительнее: похоже, что частица следует одновременно по множеству различных путей и все они вносят свой вклад в исход процесса.
Это шизофреническое поведение лучше всего иллюстрируется знаменитым двухщелевым экспериментом (рис. 11.4). Установка состоит из источника света и фотопластинки, которая закрыта непрозрачным экраном с двумя узкими щелями. Свет проникает через щели и создает изображение на пластинке. Эксперимент впервые поставил в начале XIX века английский физик Томас Юнг. Он обнаружил, что изображение складывается из чередующихся светлых и темных полосок. Свет от обеих щелей падает на все точки фотопластинки. Но в одни места световые волны приходят в фазе (гребни и впадины двух волн совпадают), усиливая друг друга, тогда как в других местах они оказываются в противофазе (гребни одной волны приходятся на впадины другой) и взаимно гасятся. Так узор из полосок объясняется волноподобной природой света.
Рис. 11.4.Двухщелевой эксперимент.
Удивительные вещи начинаются, когда мы уменьшаем интенсивность источника света до такого уровня, что фотоны испускаются им поштучно — один за другим. Каждый фотон оставляет пятнышко на фотопластинке. Сначала они располагаются беспорядочно, но поразительно, что спустя некоторое время они складываются в узор, в точности совпадающий с полосками, которые получались раньше. Фотоны попадают на экран по отдельности, поэтому те, что прошли через одну щель, не могут взаимодействовать с теми, что прошли через другую. Но как тогда им удается "усиливать" или "гасить" друг друга?
Чтобы глубже разобраться в вопросе, можно посмотреть, что случится, если вынудить фотоны проходить через одну или через другую щель. Допустим, мы выполняем эксперимент, открыв только одну щель, а затем на столько же времени открываем другую, не меняя фотопластинку. Поскольку фотоны проходят через установку по одному, это не должно внести изменений, и мы ожидаем получить тот же узор. Верно? Нет. В этой модифицированной версии эксперимента никаких полосок не наблюдается, а на снимке будут только очертания двух щелей.
Отсюда вытекает, что представление, будто фотон проходит через одну из щелей, не обращая внимания на то, открыта ли другая, неверно. Когда открыты обе щели, фотон каким-то образом "чувствует" две возможные истории, которым он может следовать. Они совместно определяют вероятность того, что фотон попадет в конкретное место на пластинке. Этот феномен называется квантовой интерференцией между историями.
Квантовая интерференция редко проявляется столь наглядно, как в двухщелевом эксперименте, но она влияет на поведение каждой частицы во Вселенной. Двигаясь из одного места в другое, частицы "разнюхивают" множество различных маршрутов, так что вместо четко определенного прошлого мы имеем запутанную сеть интерферирующих историй.
Как тогда можно быть уверенным, что некоторое событие действительно имело место? Как придать смысл понятию истории? Ответ вновь возвращает нас к крупнозернистому описанию.
Читать дальшеИнтервал:
Закладка: