Стаффорд Бир - Мозг фирмы

Тут можно читать онлайн Стаффорд Бир - Мозг фирмы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, год 2005. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Стаффорд Бир - Мозг фирмы краткое содержание

Мозг фирмы - описание и краткое содержание, автор Стаффорд Бир, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Brain of the Firm, Stafford Beer


Мозг Фирмы, Стэффорд Бир


Перевод с английского проф. М. М. Лопухина


Популярная монография одного из классиков кибернетического подхода, которая не одно десятилетие является настольной книгой многих системных аналитиков.


Эта книга посвящена большим и сложным системам, таким как животные, компьютеры и экономика. Она, в частности, посвящена системе управления предприятием — мозгу фирмы. Это трудный предмет — трудный для размышления, трудный для чтения, трудный для изложения.


ISBN 5-354-01065-9, 0-471-27687-1

Мозг фирмы - читать онлайн бесплатно полную версию (весь текст целиком)

Мозг фирмы - читать книгу онлайн бесплатно, автор Стаффорд Бир
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мера неопределенности

Сама идея о необходимости измерять неопределенность, связанную с решением, должна казаться большинству людей обескураживающей. Фактически, однако, наука уже создала соответствующую меру, весьма полезную во многих областях научных исследований. Она называется "энтропией". К несчастью, само понятие энтропии многих пугает, и поэтому я не стану его раскрывать здесь. Использование этого понятия в интересах управления тщательно разъяснено и продемонстрировано в моей книге Decision and Control ("Решение и управление"), к которой я отсылаю всякого, кто хочет детально и глубоко в этом разобраться. Для целей настоящей главы вполне достаточно определить эту меру как очень полезный инструмент, не переходя к сложным математическим или физическим обоснованиям. (Обо всем этом, однако, пришлось упомянуть, чтобы подготовленный читатель не обвинил меня в изобретении колеса).

Неопределенность, как мы видели, является функцией разнообразия. Разнообразие есть численная мера возможных состояний системы. Решение есть результат выбора одного возможного состояния из всех других. Теперь вернемся к примеру с картой. Из миллиона квадратов (на географической сетке) нам нужно выбрать один. Очевидно, что мера неопределенности, связанная с подобным "решением", начинается с миллиона и снижается до единицы. Теперь рассмотрим управленческое решение, но будем придерживаться скромной размерности задачи. Пусть у нас будет восемь изделий и восемь станков. Каждое изделие может быть изготовлено на любом станке. Тогда "решение" можно представить как определение того, какое из восьми изделий и на каком станке должно производиться в настоящее время. Это будет двумерная задача с разнообразием, равным восьми по каждому измерению. Нетрудно видеть, что из 64 вариантов нам предстоит выбрать один. Таким образом наша проблема сводится к снижению разнообразия с 64 до 1.

Далее, можно ввести еще одно измерение. Предположим, что каждое изделие выпускается в восьми вариантах — красное, голубое, зеленое и т.д. Тогда решение, которое мы пытаемся принять, становится задачей выбора одного ответа из 8х8х8 =512 вариантов. Если бы число изделий было намного больше и намного больше была бы размерность проблемы, то число вариантов такого разнообразия стало бы астрономическим. Заметьте причину этого явления — все их численные показатели должны перемножаться. Каждого прошедшего школьный курс математики это обстоятельство сразу же наводит на мысль о возможности использования логарифмов. Если бы мы использовали логарифм разнообразия по каждому измерению, то для определения общего разнообразия -там пришлось бы просто суммировать эти цифры. Но здесь возникает небольшое препятствие: большинство читателей имело дело с логарифмами по основанию 10.

В кибернетике используются логарифмы, вычисляемые по основанию 2. Это обусловлено тем, что исходным положением для решения является выбор между "да" и "нет". Такое бинарное различие (вспомните первую часть) называется битом. Более того, четыре, вещи мы можем различать с помощью двух битов информации. Мать и отец, их сын и дочь могут быть по-разному определены: "решением", во-первых, кто из них мужчина и кто женщина, и, во-вторых, кто первого и второго поколения. Нам необходимы три бинарных решения, чтобы различить восемь состояний, четыре бита нужны для различения 16 состояний, пять битов — для различения 32 состояний и т. д. Это все, что имеется в виду под фразой "вычисление логарифма по основанию 2". При десяти бинарных решениях можно различить 1024 состояния. И если все это еще не звучит достаточно впечатляюще, то следует добавить, что эти величины растут экспоненциально. Сорок бит позволят распознать одну особь в популяции, превышающей примерно триллион (10 12.)

Все, что мы теперь делали, сводится к созданию полезного арифметического метода, позволяющего рассчитывать неопределенность. Восемь вариантов, восемь изделий, изготавливаемых на восьми станках, создают 512 вариантов. Такова мера нерешенных проблем, пока не достигнуто заключение относительно того, какой вариант, какого изделия, на каком станке будет выпускаться. Теперь давайте используем наш логарифмический метод. Разнообразие из восьми вариантов по каждому измерению может быть заменено числом бит (а именно логарифмом по основанию 2), требуемых для его выражения. Для такого разнообразия ответом будет три бита (здесь 3 бита: 8/2=4; 4/2=2; 2/2=1). Общее разнообразие, вместо 8х8х8=512 вариантов теперь составит 3+ 3+ 3=9 бит. Нет нужды говорить, что оба этих разнообразия эквивалентны, поскольку 9 бит равны 2 9 =512.

Смысл предложенного здесь метода в том, что мы можем создать модель предстоящего решения, основанную не на последовательности приоритетов, и что будем измерять общее разнообразие решений. Тогда любое заключение, полученное мультинодом, будет сокращать разнообразие как общую неопределенность. Более того, исключенное разнообразие будет не просто разнообразием, относящимся к вариантам, непосредственно снятым с рассмотрения, но также к исключенным из разнообразия, относящегося к другим измерениям данной проблемы, теперь признанным и не имеющим к ней отношения как следствия ранее принятого нами решения. Вспомним, что мы разыскивали город, который не только находится на определенной широте, но он и не может находиться в море, а это ограничивает поиск его широты.

Когда мультинод начинает принимать решения, что делается отсечением разнообразия в определенном логическом измерении, он неявно ускоряет уменьшение разнообразия. Возвратимся к примеру вариантов восьми изделий, выпускаемых на восьми станках, и предположим, что мы сняли четыре станка. Разнообразие тогда составит 8х8х4 = 256. Иначе, начав привыкать к нашей новой идее, предпочтительнее записать, что первоначальное разнообразие 3+ 3+ 3=9 битов теперь уменьшилось до 3+ 3+ 2=8 битов (= 256). Здесь мы подошли к важному моменту. Мы считаем, что уменьшили разнообразие на один бит. В действительности из-за многомерности нашей проблемы такая оценка будет заниженной. Исключив четыре из восьми станков, мы (фактически) сделали невозможным производство более чем двух изделий. Для изготовления шести остальных требуется четыре снятых станка. Отсюда возможное производство изделий теперь представляет разнообразие всего в один бит — как следствие нашего первого решения. Но, в свою очередь, два таких изделия могут выпускаться только восьми цветов на тех самых четырех станках, которые мы теперь исключили. Оставшиеся станки как таковые могут теперь выпускать изделия только одного цвета. Итак, хотя мы остались без четырех станков, мы можем выпускать только два вида изделий, а вопрос об их цвете вообще снимается. Тогда нам остается решить, что делать с оставшимися тремя битами информации — 2 3= 8 сохранившихся вариантов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стаффорд Бир читать все книги автора по порядку

Стаффорд Бир - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Мозг фирмы отзывы


Отзывы читателей о книге Мозг фирмы, автор: Стаффорд Бир. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x