Пекка Теерикор - Эволюция Вселенной и происхождение жизни
- Название:Эволюция Вселенной и происхождение жизни
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2010
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пекка Теерикор - Эволюция Вселенной и происхождение жизни краткое содержание
Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».
«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.
«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.
Эволюция Вселенной и происхождение жизни - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
• Почему сила Большого взрыва была как раз такой, чтобы Вселенная приобрела в точности критическую плотность (плоское пространство)?
• Почему Вселенная изотропна, то есть одинакова во всех направлениях?
• Почему во Вселенной были отдельные области, «зародыши», с небольшим избытком плотности, которые позже превратились в галактики?
Большой взрыв мог бы оказаться слишком слабым, и в этом случае Вселенная быстро сколлапсировала бы обратно и вернулась к своему исходному состоянию. Или же он мог оказаться слишком сильным — в этом случае галактики не родились бы. Но расширение как раз такое, какое нужно: существуют области, в которых расширение уже прекратилось (галактики), в то время как в больших областях между галактиками расширение продолжается и не дает галактикам скапливаться и сливаться друг с другом.
Одним из популярных ответов на вопрос о тонкой настройке Вселенной служит антропный принцип. Можно представить, что существует бесконечное число вселенных. Почти все они непригодны для жизни, так как необходимые для возникновения жизни долгоживущие структуры в них не возникают. Но среди них есть по крайней мере одна с необходимой тонкой настройкой и скоростью расширения — наша! Если бы не возникло ни одной пригодной для жизни вселенной, то никто этого и не заметил бы. Мы еще вернемся к этой проблеме в главе 33.
А в чем проблема изотропии? Она связана с космологическим горизонтом; это расстояние, дальше которого мы не видим, по крайней мере — сейчас. Внутри горизонта располагается вся наблюдаемая Вселенная, а вне его пространство простирается, возможно даже — до бесконечности. Свет, возникший за горизонтом, все еще идет к нам. Эта граница существует из-за того, что у Вселенной конечный возраст (рис. 24.9). Таким образом, горизонт ограничивает пространство, которое мы видим; но в качестве достойной компенсации мы получаем возможность видеть рождение Вселенной, или, точнее, те события после ее рождения, излучение от которых мы можем зафиксировать. На сегодня фоновое излучение — это самый далекий посланец. Если мы когда-нибудь научимся регистрировать космическое нейтрино, то это будет весточка из эпохи, когда после Большого взрыва прошло менее одной секунды.
Рис. 24.9. Космологический горизонт — это расстояние, с которого свет может дойти до нас за время существования Вселенной (около 14 млрд лет). С большего расстояния свет еще не дошел до нас. С течением времени горизонт расширяется, и мы видим все более далекие области.
Подобно тому как у нас есть свой горизонт, у каждой точки расширяющейся Вселенной тоже есть собственный горизонт. Если две точки расположены достаточно далеко друг от друга, их горизонты не перекрываются. В таком случае Вселенную можно рассматривать как содержащую огромное количество отдельных областей, которые никогда не обменивались информацией друг с другом. В прошлом размер горизонта был меньше, чем сейчас, так как после Большого взрыва прошло меньше времени, а значит, лучи света пролетели меньшее расстояние. Но даже сейчас нетрудно найти далекие области, лежащие в разных направлениях и ничего не знающие друг о друге. Например, возьмем две любые противоположные области на небе. Космическое фоновое излучение из этих направлений возникло в местах, отдаленных друг от друга на миллиарды световых лет, когда возраст Вселенной был меньше миллиона лет. Вычисления показывают, что пятна фонового излучения, разделенные на небе более чем на пару градусов, возникли в областях, которые никогда не могли контактировать друг с другом. В то же время характеристики этого излучения очень мало меняются от одной области к другой. Как это возможно? В этом и заключается проблема изотропии.
В эпоху преобладания вещества горизонт расширяется быстрее, чем само пространство, но было ли так всегда? В эпоху своей бурной молодости Вселенная могла расширяться намного быстрее, и даже быстрее, чем сам горизонт. Если это так, то чем ближе мы к Большому взрыву, тем все большую и большую часть Вселенной должен был охватывать горизонт. На этой идее основана так называемая теория инфляции, которая призвана решить проблему изотропии. Возможно, что когда-то внутри одного горизонта находилась практически вся Вселенная либо же как минимум та ее часть, которая сейчас гораздо больше нашего современного горизонта. Все области в пределах нашего поля зрения могли в прошлом соприкасаться друг с другом, и это объясняет однородность и изотропию наблюдаемой Вселенной. Но что заставило совсем юную Вселенную начать расширяться с тем колоссальным ускорением, которого требует инфляционная модель? Эту фазу можно описать, используя силу отталкивания, впервые введенную Эйнштейном и затем отвергнутую им. Увеличив силу отталкивания, использованную в статической модели Эйнштейна, в 10 120раз и ограничив период ее действия до 10 -32с, можно получить инфляционную модель Вселенной. Но только в 1965 году Эраст Борисович Глинер из Физико-технического института им. А. Ф. Иоффе в Санкт-Петербурге понял, что сила отталкивания может возникнуть из космического вакуума. Мы вернемся к этому вопросу после краткой экскурсии по разным периодам эволюции Вселенной, какими они сегодня представляются.
Коротко говоря, в инфляционной модели с самого начала (почти) пустое пространство стало быстро расширяться, и Вселенная оставалась относительно пустой и холодной. Затем вдруг, примерно за 10 -32с, Вселенная заполнилась веществом и излучением при очень высокой температуре, порядка 10 28градусов. Энергия для рождения этого вещества и излучения черпалась из вакуума, в результате чего у него она понизилась до нынешнего значения. После этого процесс расширения стал «нормальным».
Так закончился первый период космической истории — эпоха инфляции. Родившаяся тогда материя не была похожа на ту, которую мы знаем сегодня; да и взаимодействия были другими. Например, электромагнитная сила и слабая сила тогда еще не были независимыми — это была единая электрослабая сила. Такие частицы, как фотоны и W- и Z-бозоны, были неотличимы друг от друга, и тогда еще не было речи об электронах, мюонах и нейтрино в их современном смысле. В ту эпоху могли существовать и какие-то неизвестные частицы вроде гипотетических Х-частиц, которые невозможно создать даже на самых мощных ускорителях. Период между эпохой инфляции и более поздней эпохой кварков можно разделить на две части. Первая фаза называется эпохой теорий великого объединения, а вторая — эпохой теории Вайнберга-Салама. Эти названия связаны с современными теориями взаимодействия. В начальной фазе цветная сила и электрослабая сила представляли собой единую силу, а в следующей фазе они уже разделились (Врезка 24.1).
Читать дальшеИнтервал:
Закладка: