Пекка Теерикор - Эволюция Вселенной и происхождение жизни
- Название:Эволюция Вселенной и происхождение жизни
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2010
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пекка Теерикор - Эволюция Вселенной и происхождение жизни краткое содержание
Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».
«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.
«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.
Эволюция Вселенной и происхождение жизни - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Рис. 31.8 Карликовая планета Плутон кроме крупного спутника Харон, открытого в 1978 году, имеет два маленьких спутника — Никта и Гидра, обнаруженных космическим телескопом «Хаббл».
С далекой периферии Солнечной системы в ее внутренние области регулярно прилетают гости. Это кометы, довольно маленькие, состоящие изо льда и пыли. Они приходят по сильно вытянутым эллиптическим орбитам. Самая удаленная часть такой орбиты — афелий — может находиться в сотнях и тысячах астрономических единиц от Солнца, тогда как в наиболее близкой к Солнцу точке орбиты — перигелии — комета может почти касаться поверхности Солнца. Некоторые кометы буквально ныряют в атмосферу Солнца, а другие не подходят к нему ближе орбиты Юпитера.
На своих вытянутых орбитах кометы большую часть времени проводят в области афелия. Их визиты вглубь Солнечной системы очень коротки и драматичны. Приближаясь к Солнцу, комета начинает согреваться в его лучах. Примерно на расстоянии Юпитера тепла становится достаточно, чтобы «разбудить» комету. Из нее начинают сублимироваться летучие газы. Твердое ядро окутывается довольно яркой газовой комой, и начинает вытягиваться хвост. Возрастающий поток солнечного излучения все сильнее нагревает комету, а давление солнечного ветра на газ и частицы пыли создает один или два хвоста. После прохождения перигелия все идет в обратном порядке, и комета удаляется в своем одиночестве в пустоту космоса. Когда-нибудь она может вернуться.
На пути вглубь Солнечной системы комета испытывает притяжение планет-гигантов. Обычно это немного меняет ее орбиту. Если она пройдет близко от планеты, то может быть захвачена на орбиту меньшего размера. Иногда комета даже может столкнуться с планетой, как это случилось 16–22 июля 1994 года, когда разрушающаяся комета Шумейкеров-Леви врезалась в Юпитер (см. цветную вкладку).
Кометы интересны с многих точек зрения. Как было сказано, именно они в эпоху молодости Солнечной системы доставили на поверхность планет много важных химических соединений. Радиоастрономическая спектроскопия выявила в кометах десятки разных молекул, в основном тех же, которые наблюдаются в холодных межзвездных облаках. В кометах найдены молекулы воды, синильной кислоты (HCN), формальдегида (Н 2CO), считающиеся первыми строительными блоками жизни. Несколько космических зондов было направлено к кометам и собрало много данных. Успешными были экспедиции Stardust (комета Вилд 2), Deep Impact (Темпель 1), Deep Space-i (Борелли), ISEE-3 (Джакобини-Циннер) и пять экспедиций к комете Галлея. Stardust стала первой экспедицией, доставившей на Землю образцы вещества из объекта, находящегося дальше Луны.
А теперь забудем о хвосте и коме и рассмотрим саму комету. Среди исследованных зондами комет ни одна не похожа на другую. Комета Вилд 2 почти сферическая, кометы Борелли и Галлея довольно вытянуты и напоминают батат или земляной орех. Рассмотрим подробнее комету Темпель 1. В момент прибытия к ней зонда она была на расстоянии 1,5 а. е. от Солнца. Ее размер 8 х 5 км типичен для ядер комет. Перед наибольшим сближением от аппарата Deep Impact отделился массивный «ударник» и с большой скоро-стью врезался в комету. В результате столкновения и вызванного им взрыва стало ясно, что на поверхности ядра лежит пылевой слой толщиной десятки метров и есть признаки слоистой структуры в глубине. Низменные области ядра довольно плотно покрыты кратерами, а возвышенные выглядят более молодыми. Очевидно, что недра весьма пористые, поскольку средняя плотность составляет всего 0,6 г/см 3. На стороне, обращенной к Солнцу, температура около 70 °C, а на теневой стороне -3 °C. Ясно, что поверхность слишком теплая для льда. В выбросе, наблюдавшемся после столкновения, инфракрасный телескоп «Спитцер» увидел следы глин и карбонатов. Это может означать, что где-то в глубине ядра есть или хотя бы иногда бывает жидкая вода. Это важно для предбиологической химии, а может быть, и для зарождения жизни, так как делает возможным в кометах наличие цикла «концентрации-разведения». Более того, химические процессы на поверхности с участием минералов, глин, льдов, солнечного излучения и высокоэнергичных частиц делают принципиально возможным формирование сложных молекул. Там может синтезироваться нечто похожее на толины. Доставленные на Землю образцы кометы Вилд 2 говорят о том, что в минералогических процессах вода там не играла заметной роли. С другой стороны, эти образцы содержат множество довольно сложных молекул.
Различие между кометами и астероидами не всегда однозначное. В наибольшей степени они различаются своей «пушистостью». На поверхности астероидов и у метеоритов тоже могут быть подобные, хотя и не тождественные, химические соединения. Это доказал метеорит Мурчисон, упавший в 1969 году в Австралии. В нем было обнаружено несколько десятков аминокислот и других сложных органических молекул.
Похоже, что при ударе о планету кометы не выживают. Астероид же, ударившись о планету, может расколоться, и какая-то часть вещества может быть выброшена обратно в космос. В выброшенном веществе может содержаться жизнь, скажем, в форме бактерий. Если кусок вещества имеет размер порядка 1 м, он может служить переносчиком жизни между планетами в Солнечной системе. Вполне вероятно, что такой перенос происходил неоднократно. Любопытно к тому же, что это может дать единственную возможность для обнаружения ископаемой жизни древней Венеры, если столкновение случилось очень давно.
В результате развития наших знаний о жизни на Земле и новых открытий об условиях на Марсе и других телах Солнечной системы постоянно расширяется список мест, пригодных для жизни или, по крайней мере, для предбиологической химической эволюции. А уж если наша планетная система имеет несколько мест, где могли бы существовать определенные формы жизни, то число потенциальных прибежищ жизни во всей нашей Галактике может значительно возрасти. Но часто ли у других звезд существуют планетные системы? И пригодны ли они для жизни? Мы обсудим это в следующей главе.
Глава 32 Внесолнечные планетные системы и жизнь на экзопланетах
Впервые за всю историю человечества прибавление в семье планет произошло в 1781 году, когда Вильям Гершель открыл Уран, который сначала он принял за комету (см. главу и). А раз была найдена новая планета, хотя бы и случайно, то вероятность обнаружения следующих планет возросла. В конце XVIII века эти надежды усилились благодаря открытию эмпирического закона Тициуса-Боде, который, как тогда считали, точно предсказывает расстояния всех известных планет, включая Уран, но при этом говорит о несуществующей планете, которая должна находиться на расстоянии 2,8 а. е. от Солнца (см. врезку 11.1).
Читать дальшеИнтервал:
Закладка: