Пекка Теерикор - Эволюция Вселенной и происхождение жизни
- Название:Эволюция Вселенной и происхождение жизни
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2010
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пекка Теерикор - Эволюция Вселенной и происхождение жизни краткое содержание
Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».
«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.
«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.
Эволюция Вселенной и происхождение жизни - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Хотя идеи Бора были верны, предложенная им конкретная картина строения атома, как выяснилось, не имеет реального физического основания. Многие физические законы микромира совершенно не похожи на те, которым подчиняются окружающие нас предметы. Ни механику Ньютона, ни электромагнитную теорию Максвелла нельзя напрямую применять к явлениям атомного масштаба.
Новая теория для механики атомных явлений была названа квантовой механикой. Первый шаг к ее открытию сделал немецкий физик Вернер Гейзенберг. Немного позже была разработана квантовая электродинамика для описания электромагнитных явлений в мире атомов. Эти новые теории связаны со старой, так называемой классической физикой таким образом, что если двигаться от масштаба атомов к обычным размерам, то в пределе получаются результаты классической физики. В этом смысле квантовая физика предлагает более глубокий взгляд на реальность, чем классическая физика.
Вернер Гейзенберг (рис. 17.3) работал в Геттингенском университете в группе, которой руководил Макс Борн (1882–1970), занятый изучением странного поведения электронов в атоме. В июне 1925 года в воздухе витал оптимизм: все ждали прорыва. Но именно тогда у Гейзенберга случился сильный приступ сенной лихорадки, вынудивший его уехать из Геттингена. Он отправился путешествовать по суровому острову Гельголанд в Северном море, где его сенная лихорадка прошла. Там 23-летний Гейзенберг продолжал думать о работе. Наконец все сошлось, и родилось точное математическое описание поведения электрона. Позже Гейзенберг рассказал, что как-то под утро, в три часа…
«Я уже не сомневался в логике и стройности той части квантовой механики, которой касались мои вычисления. Вначале я был очень встревожен: я чувствовал, что смотрю сквозь поверхности атомных явлений в их странную и прекрасную суть, и у меня кружилась голова оттого, что я могу исследовать эти математические структуры, природа которых великодушно раскрылась предо мной».
После возвращения в Геттинген Гейзенберг постеснялся рекламировать свое открытие. Он описал результаты в научной статье и дал копии рукописи Борну и своему другу из Мюнхена Вольфгангу Паули. Борн послал статью в журнал Zeitschrift filr Physik («Физический журнал») для публикации. Гейзенбергу нужно было уехать, и он оставил Борна размышлять над смыслом таблиц в этой статье.
Рис. 17.3. (а) Вернер Гейзенберг (1901–1976) и (6) Эрвин Шрёдингер (1887–1961).
Борн обратил внимание, что таблицы Гейзенберга были матрицами — основными величинами раздела математики, называемого матричной алгеброй. Вместе со своим коллегой Паскуалем Иорданом Борн начал переводить теорию Гейзенберга на язык матриц. Сам Гейзенберг, бывший в то время в Копенгагене, принял участие в завершении этой теории. Примерно тогда же Поль Дирак в Кембридже создал такую же теорию, но в иной математической форме, а через год Эрвин Шрёдингер разработал еще один вариант (о нем мы расскажем ниже). Для квантовой физики это была бурная эпоха!
Главная особенность квантовой механики заключена в ее вероятностной природе, сформулированной Максом Борном в 1926 году. Вместо того чтобы говорить о точных значениях физических величин, есть возможность описать только распределение вероятности этих значений. Связано это с принципом неопределенности, опубликованным Гейзенбергом в 1927 году. Гейзенберг понял, что одновременное существование частицы как материального тела и как волны требует фундаментальных ограничений в положении частицы. Невозможно сказать, на каком расстоянии от атомного ядра расположен электрон в данный момент времени. Одновременно знать об этих двух вещах невозможно. Электрон «размазан» по окрестности ядра. Можно только сказать, что наиболее вероятно обнаружить электрон на таком-то расстоянии и в таком-то направлении, а не на других расстояниях и не в других направлениях. В этом смысле «планетные орбиты» из простой модели Бора теперь представляют только наиболее вероятные области, где можно найти электрон. Это касается не только электрона, связанного в атоме, но и всех электронов и вообще всех частиц. Общее правило гласит: частица «размазана» тем сильнее, чем она легче. «Размазанность» обычных предметов, типа теннисного мяча, совершенно незаметна.
«Размазанность частицы» — звучит абстрактно, но на деле имеет конкретные следствия. Например, при испускании альфа-излучения частица выходит из радиоактивного ядра путем туннелирования. Альфа-частица связана с ядром сильным ядерным взаимодействием, надежно удерживающим ее в ядре. Но мы видим, как время от времени альфа-частицы покидают ядро. Георгий Гамов (изучавший также космологию и генетический код; см. главы 24 и 28), используя квантовую теорию, объяснил это тем, что альфа-частицы «размазываются» не только по ядру, но и выходят немного за его пределы. «Размазывание» означает, что с некоторой вероятностью частицу можно обнаружить в любом месте той области, по которой она «размазана». Следовательно, альфа-частица находится внутри ядра с вероятностью немного меньше 100 %, и в то же время она с небольшой вероятностью находится вне ядра. Поэтому время от времени положительно заряженная альфа-частица материализуется вне ядра, вне области сильного ядерного взаимодействия, где электрическое отталкивание от положительно заряженного ядра выталкивает ее наружу.
На эффекте туннелирования основан и синтез гелия в недрах Солнца, дающий такой любимый нами солнечный свет. Ядра гелия образуются при объединении ядер водорода — протонов, которые должны сблизиться настолько, чтобы их связало сильное ядерное взаимодействие. Сближению протонов мешает их электрическое отталкивание, преодолеть которое протоны могли бы при очень высокой скорости движения. Но в недрах Солнца их скорости довольно малы. Как же разрешается эта дилемма? Поскольку протоны тоже «размазаны» вблизи своего среднего положения, временами они материализуется ближе друг к другу, чем на это указывает их среднее положение. Так что протоны, к своему удивлению, вдруг могут оказаться в области сильного ядерного взаимодействия, хотя ожидать этого было невозможно.
Рассмотрим теперь такой случай. Мы сильно бьем в кирпичную стену дома теннисным мячом. Неожиданно мяч проходит сквозь стену и оказывается внутри здания. А в стене как не было дырки, так и нет; мяч туннелировал сквозь стену. То, что этого никогда не может произойти, обусловлено большой массой теннисного мяча по сравнению с массой протона! Теперь понятно, почему электрон не может быть составной частью ядра. Как легкая частица, электрон размазан по такой большой области, что не может удержаться в ловушке внутри ядра.
Читать дальшеИнтервал:
Закладка: